
Visualization of Program Dependence Graphs�

Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck

Institute for System Software
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz
Linz, Austria

{wuerthinger,wimmer,moessenboeck}@ssw.jku.at

Abstract. The analysis of a compiler’s intermediate data structures
helps at debugging complex optimizations. We present a graphical tool
for analyzing the program dependence graph of Sun Microsystems’ Java
HotSpotTM server compiler. The tool saves snapshots of the graph during
the compilation. It displays the graphs and provides filtering mechanisms
based on customizable JavaScript code and regular expressions. High
performance and sophisticated navigation possibilities enable the tool to
handle large graphs with thousands of nodes.

1 Introduction

The Java HotSpotTM server compiler [5] of Sun Microsystems uses a program
dependence graph [2] as the intermediate data structure when compiling Java
bytecodes to machine code. It applies optimizations such as global value num-
bering, conditional constant propagation, and loop transformations to produce
faster code. When debugging the compiler, only a textual output of the graph
is currently available.

We present a tool that facilitates analyzing the compiler by providing a graphi-
cal representation of the program dependence graph. The tool captures snapshots
of the graph during the compilation of a method, so the user can reconstruct
the transformations applied to the graph by compiler optimizations. The tool
applies filters based on regular expressions to make the appearance of the graph
customizable and enables the user to quickly focus on specific parts of the graph,
which is especially helpful for the analysis of large graphs.

While the main focus of the tool is currently the visualization of the data
structures of the server compiler, it can easily be adapted for other programs
that work on directed graphs. A more detailed description of the tool and the
program dependence graph can be found in [8].

2 Architecture

The program dependence graph of the Java HotSpotTM server compiler combines
control, data, and memory dependencies into a single graph. A node has ordered
� This work was supported by Sun Microsystems, Inc.

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 193–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 T. Würthinger, C. Wimmer, and H. Mössenböck

Graph Snapshots

Server Compiler
Instrumentation

Java HotSpotTM VM Visualization Tool

Filter Layout Display

configuration

Fig. 1. Interaction between the compiler and the visualization tool

input slots and produces a single output value. Projection nodes are used when a
node produces a tuple. Figure 1 shows the interaction between the visualization
tool and the server compiler.

We instrument the compiler to take snapshots of the graph. The snapshots
are either stored in an intermediate file or directly sent to the visualization tool
via a network connection, which additionally allows configuration data to be
sent back to the compiler. The user can select a set of filters to be applied to
the graph. After the graph is transformed by the filters, the layout algorithm
calculates node positions and interpolation points for the edges. Then the graph
is displayed on the screen.

Data Model. The graphs are stored in an XML based format. They can be ex-
ported to a file to allow subsequent analysis. The snapshot of a graph is serialized
as the difference to the previous snapshot. This reduces the storage requirements
when snapshots of the graph are taken frequently.

Properties of nodes are stored as textual key-value pairs to improve extensibil-
ity. New properties can be introduced without changing the tool. Filters select
nodes based on regular expressions on the value of a property with a certain
name, and custom filters for arbitrary properties can be defined. This way, the
tool can be used to visualize directed graphs whose nodes have other properties
than the nodes of the server compiler.

The data transmitted from the server compiler to the visualization tool con-
tains a clustering of the nodes into basic blocks when this information is already
available in the compiler. Otherwise the tool calculates an approximate schedul-
ing of the nodes. The basic data model does not contain any display information.
Before the filters are applied, the transmitted graph is converted into a graph
with display information such as node positions and node colors. A node can
have multiple output slots in this model, e.g. if a filter merges several nodes.

Graph Layout. We use a hierarchical layout algorithm based on the approach
of Sugiyama [6] and the GraphViz tool dot [3]. The main focus of our imple-
mentation is performance, because the graph of large methods can have a few
thousand nodes and more than ten thousand edges. Long edges are cut so that
only the beginnings and endings are drawn. This improves the overview as well
as the performance. A special routing for backward edges ensures that they also
start at the bottom of their start node and end at the top of their destination
node.

Visualization of Program Dependence Graphs 195

Fig. 2. Screenshot of the visualization tool showing two graphs

3 Usage

Figure 2 shows the tool when displaying an extract of a graph in normal view
and a whole graph in satellite view. The methods retrieved from the server
compiler are listed in the top left window. Double-clicking on the graph snapshot
of a certain method opens the graph in the middle area. The top right window
contains the available filters; checkboxes activate them. The list of filters can
be edited, and the selected set of filters can be saved as a profile. The bottom
right window corresponds to the control flow graph approximation of the active
program dependence graph. The bottom left window displays the textual key-
value properties of the selected nodes. The middle left window contains the
bytecodes of the compiled method.
Filtering. Before layouting and displaying the graph, filters are applied that can
remove, add, merge, split, and color nodes and edges. The filters can be speci-
fied by predefined JavaScript functions, which use regular expression based rules
on the node properties. The following JavaScript statement assigns a red back-
ground color to all nodes whose name starts with the letter “I”. Semantically,
this highlights all integer instructions: colorize("name", "I.*", red);

Difference. The tool can display the difference between snapshots graphically.
It is also capable of calculating the approximate difference between two arbitrary
graphs, e.g. snapshots before and after a compiler change. The difference is made
visible using color filters. This helps identifying the effects of modifications in
the compiler.
Navigation. Despite standard graph navigation techniques like showing and
hiding nodes or going to pre- and successors of a node, the tool provides a way
to navigate in the graph by only double clicks on nodes. The tool maintains
the set S of fully shown nodes. It draws all nodes that are immediate pre- or
successors of a node of the set S as semi-transparent. The user can add one of
those semi-transparent nodes to the set S by a double click on it. Performing
this action on a node of the set S removes it from the set.

196 T. Würthinger, C. Wimmer, and H. Mössenböck

Bytecodes. The bytecodes window shows the input data of the server compiler.
If methods are inlined, this is a tree structure where the inlined methods are
shown as children of the method call. Navigation between the bytecodes and the
graph is available for instructions that may throw an exception. For all other
instructions, the server compiler does not track which instructions are created
for a certain bytecode.

4 Related Work

Balmas presents a tool that displays the program dependence graph for C source
code with focus on creating hierarchical groups of nodes [1]. Krinke developed a
similar tool that additionally gives a textual representation of program slices [4].
The main differences to our application are that they do not have built-in filtering
mechanisms and they are not designed to visualize a program dependence graph
structure that changes during compilation of a method as compiler optimizations
are applied.

5 Conclusions

We presented a tool for displaying the program dependence graph of the Java
HotSpotTM server compiler at various stages during compilation. It helps at
debugging the server compiler and analyze its built-in compiler optimizations.
A property-based filter system makes the tool flexible and also usable for the
analysis of other directed graph structures. The HotSpotTM compiler team at
Sun Microsystems is currently evaluating the tool and integrating the server
compiler instrumentation into the upcoming JDK 7 [7]. They are planning to
include the visualization tool in the OpenJDK project.

References

1. Balmas, F.: Displaying dependence graphs: A hierarchical approach. In: Proceedings
of the Working Conference on Reverse Engineering, pp. 261–270 (2001)

2. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

3. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing di-
rected graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)

4. Krinke, J.: Visualization of program dependence and slices. In: Proceedings of the
IEEE International Conference on Software Maintenance, pp. 168–177 (2004)

5. Paleczny, M., Vick, C., Click, C.: The Java HotSpotTM server compiler. In: Pro-
ceedings of the Java Virtual Machine Res. and Techn. Symposium, pp. 1–12 (2001)

6. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2),
109–125 (1981)

7. Sun Microsystems, Inc.: JDK 7 Project (2007), https://jdk7.dev.java.net/
8. Würthinger, T.: Visualization of program dependence graphs. Master’s thesis, Jo-

hannes Kepler University Linz (2007)

https://jdk7.dev.java.net/

	Visualization of Program Dependence Graphs
	Introduction
	Architecture
	Usage
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

