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ABSTRACT

Dynamic compilers can optimize application code specifi-
cally for observed code behavior. Such behavior does not
have to be stable across the entire program execution to
be beneficial for optimizations, it must only be stable for
a certain program phase. To specialize code for a program
phase, it is necessary to detect when the execution behavior
of the program changes (phase change). Trace-based compi-
lation is an efficient method to detect such phase changes. A
trace tree is a collection of frequently executed code paths
through a code region, which is assembled dynamically at
run time as the program executes. Program execution tends
to remain within such a trace tree during a stable phase,
whereas phase changes cause a sudden increase in side ex-
its from the trace tree. Because trace trees are recorded at
run time by observing the interpreter, the actual values of
variables and expressions are also available. This allows a
definition of phases based not only on recurring control flow,
but also on recurring data values. The compiler can use con-
stant values for variables that change their value rarely and
rely on phase detection to handle the case when the variable
value actually changes. Our evaluation shows that phase
detection based on trace trees results in phases that match
the intuitive expectation of a programmer and that are also
useful for compiler optimizations.
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1. INTRODUCTION

The success of the programming language Java has pro-
pelled virtual-machine based program execution into the
mainstream. Java’s execution model allows for continuous
just-in-time (JIT) compilation and profile-guided optimiza-
tion. This enables aggressive dynamic optimizations [1] that
specialize the machine code towards the current execution
phase of the application. Problems arise when the program
phase changes after optimizations have been applied: an op-
timization that has improved the performance of the first ex-
ecution phase might decrease the performance of subsequent
phases. To avoid this, the virtual machine must detect such
phase changes, revert the optimizations, and then apply a
different set of optimizations.

Phase detection splits the application lifetime into sev-
eral non-overlapping intervals where execution behavior is
similar within a given interval, but different from adjacent
intervals. Such an interval is called a stable phase. Between
two stable phases, there can be transitioning code that is
executed rarely and therefore not part of any stable phase.

Figure 1 shows an example of a local phase change in-
side a method. It contains the control-flow graph of a loop
that has an if-else-condition in the loop body. Assume that
only the if-branch is frequently executed for a while. The
JIT compiler can optimize for this code path. When the
execution phase changes and the execution frequency of the
else-branch increases, the phase is no longer stable and the
optimization no longer beneficial. Assume that after a short
period of instability only the else-branch is frequently exe-
cuted. The JIT compiler can now optimize the else-branch
and treat the if-branch as code not affecting performance.

stable phase

——> unstable phase ——> stable phase

—> frequently executed ----> infrequently executed

Figure 1: Example for a phase change inside a loop.



Traditionally, JIT compilers operate on a per-method ba-
sis, i.e., they compile one method at a time. This makes it
difficult for the compiler to distinguish important parts of
the method from rarely executed code, e.g., code for excep-
tion handling. To overcome this problem, we use trace-based
compilation [8] where the compilation follows only execution
paths that are frequently taken at run time. Machine code
is generated only for these paths. If a rare code path is ex-
ecuted that is not covered by a compiled trace, a side exit
is taken from the compiled trace and execution continues
in the interpreter. In other words, traces are an implicit
speculation on control flow.

We believe that traces are also ideal for phase detection.
The execution frequency of traces and the number of side
exits are good estimates for the application behavior. Since
compiled traces cover frequently taken execution paths, ex-
ecution that follows these compiled traces implies that the
program is in a stable phase. A sudden increase of side exits
indicates a phase change. Phase detection based on this data
is simpler compared to previous approaches based, e.g., on
profiles of all conditional branches [14], program counters [4],
or cache miss rates [9].

Traces do not only cover the control flow, but also the
data flow of the one prototypical trace execution that was
recorded. The JIT compiler can freely decide what to do
with this information; it can either ignore it, which means
that no optimizations are performed based on actual data
values, or assume that some values are the same in subse-
quent runs. We use the information to define phases not
only by control-flow paths that are frequently taken, but
also by data values that are stable for a certain timeframe.

To the best of our knowledge, we are the first to perform
phase detection based on specific data values. In summary,
this paper contributes the following;:

e We perform local phase detection based on trace trees.

e We define phases not only on control flow, but also on
specific associations between data values and variables.

e We use phase information for guiding optimizations of
the trace compiler.

e We present a prototype implementation and evaluation
in a research Java VM.

2. TRACE COMPILATION

Trace compilation uses a different paradigm than most
other just-in-time (JIT) compilers. Instead of adhering to
principles derived from traditional static compilers, trace
compilation is only applicable for dynamic compilers be-
cause it is based on run-time profiling information. Exe-
cution starts in the interpreter. It keeps track of frequently
executed “hot” parts of the program, which are only loops
in our current implementation. We detect hot loops by in-
crementing backward branch counters. When a counter ex-
ceeds a certain threshold, the loop is considered worth for
compilation.

In the next loop iteration, the interpreter records the ex-
ecution of each bytecode using the trace recorder. The trace
recorder constructs the trace compiler’s intermediate repre-
sentation. Aside from containing the opcode, operands, and
the current program counter, each instruction also contains
its current value, as observed during execution. This is the
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Figure 2: Trace recording and compilation.

main difference to traditional abstract interpretation where
no actual values are available. Recording stops when the
interpreter reaches the loop header again. A trace can be
seen as one prototypical execution of the loop, which is then
compiled into machine code that is suitable for the succeed-
ing loop iterations. When the interpreter reaches a position
where a compiled trace starts, it invokes the machine code
of the trace. Figure 2 illustrates trace recording and compi-
lation.

A trace is a linear instruction sequence without branches.
Conditional branches inside the original loop are recorded as
guard instructions. They ensure that the control flow during
machine code execution still follows the original recorded
trace. A guard checks the condition of the original branch,
and takes a side erit to the interpreter when the condition is
different. The interpreter starts trace recording again at the
side exit point and records instructions until the loop header
is reached again. This results in a trace tree that covers all
frequently taken paths through a loop. If the loop header
is not reached during trace recording, it is aborted after a
certain time.

Trace recording does not stop at method calls, but follows
the execution of the called method. This is similar to partial
method inlining of traditional compilers. For virtual method
calls, a guard instruction is inserted to check that the called
method is the method seen during recording. Effectively,
trace compilation thereby performs dynamic method spe-
cialization. No control-flow graph is built during compila-
tion. Because of the linear structure of traces, compilation is
also simpler compared to traditional compilers. Control flow
does not merge inside a trace, but only at the loop header,
which allows optimizations to be performed mostly without
complex data-flow analyses.

2.1 Example

Figure 3 shows the main computation loop of the Se-
ries benchmark, which is a part of Java Grande benchmark
suite [3]. It performs numerical integration of the function
defined in the method thefunction() by dividing the inter-
val between x0 and x1 into steps trapezoids and summing
up the area in the variable result. To improve readability,
we removed one parameter of the methods and do not show
the code before and after the loop. However, this does not
affect the execution behavior of the benchmark.



double integrate(double x@, double x1,
int steps, int select) {
double x = x0;
double dx = (x1 - x@) / steps;
double result = ...

while (--steps > 9) {
X += dx;
result += thefunction(x, select);

}

return result;

}

double thefunction(double x, int select) {
switch (select) {
case 0: return pow(x+1l, X);
case 1: return pow(x+1l, x) * cos(x);
case 2: return pow(x+1l, x) * sin(x);

}

return 0;

}

Figure 3: Java Grande Series example.

When compiling the method integrate(), a traditional
compiler would first build a control-flow graph as shown in
Figure 4(a). Assume that the compiler decided to inline
the method thefunction(), so that the control flow for the
switch statement is contained in the loop. Machine code is
also generated for the complex code parts before and after
the loop, although this code is executed much less frequently
than the loop body.

In the trace-based system, compilation does not start at
the method entry, but at the loop header. The first loop
iterations are interpreted, and the interpreter increments a
backward branch counter. When the counter exceeds a cer-
tain threshold, records the trace. A trace is a list of inter-
mediate representation instructions for the compiler. The
conditional branch at the loop header checks if the vari-
able steps is less than or equal to 0 and exits the loop in
this case. During trace recording, the branch is not taken.
The recorded trace is only correct as long as steps remains
greater than 0, so the trace recorder appends a guard in-
struction that checks for this condition. When the guard
fails, a side exit from the trace is taken and execution con-
tinues in the interpreter. In other words, guards replace
control-flow instructions that are used by traditional com-
pilers.

The switch statement inside the loop is also compiled into
guard instructions. During the first loop iterations, the value
of select is 0, so the first trace contains only this code path.
A guard ensures that a side exit is taken for other values of
select. After some time, the method is called with the
select value 1. The guard fails, and execution continues in
the interpreter. Because the path starting at this side exit
reaches the loop header again, the interpreter also records
a trace for it. This second trace is attached to the side
exit of the first trace. The two traces together form a trace
tree and are compiled together. The same happens for the
select value 2, which leads to a third trace to be recorded.
Figure 4(b) shows the resulting trace tree. Note that the
default path of the switch statement is never executed and
therefore neither recorded nor compiled.
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Figure 4: Control-flow graph and traces for example.

3. PHASESBASED ON CONTROL FLOW

Phase detection is the abstract problem of finding parts
of an execution profile where the behavior of the application
is similar. Hind et al. introduced two parameters that must
be specified [10]: granularity, which defines how the profile
is split into chunks for comparison, and similarity, which
defines how the chunks are compared. A phase is then a
sequence of chunks where the profile is similar. We define
the two parameters as follows:

e Granularity: We operate on the granularity of traces.
Because we do not want to interrupt the optimized
machine code of a trace, we check for phase change only
when a side exit is taken and execution continues in
the slower interpreter anyway. Checking at every side
exit would lead to a too short measurement interval
where no stable phases could be detected, so several
side exits are combined to a chunk. The chunk size is
a configurable but fixed number of side exits that must
be taken before the check is performed.

e Similarity: We define similarity based on the execution
counters for traces (called trace counters) and side ex-
its (called side exit counters). Each backward branch
in a trace and each side exit has a distinct counter. A
similarity value is computed from these counter values.
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Figure 5: Phase detection integrated into trace recording.

The management of the counters and the computation of
the similarity values are performed independently for each
trace tree. This means that each trace tree has its own phase
state. This is called local phase detection [4]. A global phase
state [10, 14] would not be useful in our system because we
use the phase information for guiding compiler optimiza-
tions, which operate only at the level of trace trees. The
information that the application behavior has changed from
executing one trace tree to another trace tree cannot be used
for compiler optimizations within one trace tree. However,
the trace counters and side exit counters could also be used
for global phase detection by applying the similarity formula
on the counters of all trace trees.

3.1 Structure of the Phase Detection System

Figure 5 shows how phase detection is integrated into the
recording and compilation of traces. The first states are
equivalent to the basic execution system presented in Fig-
ure 2. Execution starts in the interpreter, and when a back-
ward branch counter crosses a certain threshold, a trace is
recorded and compiled. For this compilation, complex com-
piler optimizations are disabled so that compilation is fast.
If there is more than one frequently executed path through
the loop, these traces are also recorded and attached to the
corresponding side exits. This results in the trace tree being
built fairly quickly. After a short time, no more new side
exits are taken, so no trace recording occurs anymore.

Trace counters and side exit counters are incremented
while the trace is executed and used to compute the sim-
ilarity value. When this value crosses a certain threshold, a
stable phase is detected. Because it is now unlikely that new
traces are added to the trace tree, we compile the trace tree
with compiler optimizations enabled and execute the opti-
mized machine code. The counter values are still checked
regularly, and a phase change is detected when the similar-
ity value drops below the threshold.

Depending on the kind of phase change, either new traces
are added to the trace or the whole trace tree is discarded.
In most cases, a phase change means that new traces are
added to the existing trace tree (small phase change). Only
if the trace tree contains traces that were never executed in
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this phase, a special handling is performed: the whole trace
tree is deleted and all trace recording starts anew (big phase
change). An unexecuted trace means that the corresponding
code path is no longer needed. By deleting the trace tree,
we ensure that this code path is eliminated. This reduces
not only the size of the machine code, but also improves the
code quality of the remaining traces because it enables opti-
mizations. For example, variable definitions that were only
used in the deleted traces can be removed from the remain-
ing code (dead code elimination), or code that is now loop
invariant can be moved into the loop header (loop invariant
code motion). Going back completely to the interpreter is
also important for phase detection based on data flow, as
shown in Section 4.

3.2 Computation of Similarity

The computation of the similarity value requires counter
values of the current chunk and the previous chunk. There-
fore, the counter values are saved and reset to 0 after a fixed
number of side exits has been taken. Figure 6 shows the ba-
sic formula for the computation of the similarity value. The
input values are the current (cur) and previous (prev) values
of a counter array with the length n. It is a slightly mod-
ified version of the weighted similarity computation intro-
duced by Hind et al. [10]. The similarity value is a number
between 0 and 1, where 0 means no similarity and 1 means
perfect similarity. A value above a configurable but fixed
threshold indicates a stable phase, a value below the thresh-
old an unstable phase. The computation of the similarity
value is simple and fast because only arithmetic operations
and minimum computations are necessary. This is a positive
side effect of the high granularity of traces: results can be

n
Z min (cur;, prev;)

i=1
n n

min E curi,g prev;
=1 =1

Figure 6: Computation of phase similarity.

similarity =



boolean checkStablePhase() {
traceSim = computeSimilarity(traceCur, tracePrev);
exitSim = computeSimilarity(exitCur, exitPrev);

similarity = (traceSim + exitSim) / 2;
return similarity > THRESHOLD;
}

double computeSimilarity(int[] cur, int[] prev) {
for (i = @; i < cur.length; i++) {
sumMin += min(cur[i], prev[i]);
sumCur += cur[i];
sumPrev += prev[i];

}

return sumMin / min(sumCur, sumPrev);

}

Figure 7: Computation of phase similarity.

inferred directly from the counter values without the need
for statistical correlation methods.

The trace counters and the side exit counters could be
summed up together using this formula. However, these
counters typically have a different characteristic: trace coun-
ters usually have much higher values because a loop is ex-
ecuted multiple times before it is exited at a side exit. To
avoid that the trace counters dominate the similarity value,
we compute the similarity separately for trace counters and
side exit counters, i.e., we apply the formula twice. The
overall similarity value is the arithmetic mean of the trace
similarity and the side exit similarity.

Because of this, four arrays of counter values go into the
computation formula: the current trace counters (traceCur),
the current side exit counters (exitCur), the previous trace
counters (tracePrev), and the previous side exit counters
(exitPrev). Figure 7 shows the pseudocode for the com-
putation formula. For each pair of a current and previous
counter, the minimum is computed. If this value is big, both
counters had a high value and so the execution behavior is
similar. If only one of the counters was big, the minimum
value is low and indicates a phase change. The sum of the
minima is the divided by the minimum of the sums, which
guarantees that the resulting value is between 0 and 1. If the
arithmetic mean of the similarity values is above a certain
threshold, the phase is stable.

3.3 Example

Figure 8(a) continues the example started in Figure 3. It
shows the method do() of the Java Grande Series bench-
mark that actually calls the method integrate(). The
method integrate() is called with three different values
for the parameter select: first with the value 0 before the
loop, and then with the values 1 and 2 alternatively inside
the loop. In Figure 8(b), we split the loop into two loops so
that the select values 1 and 2 are separated, which leads
to a different phase behavior.

Figure 4 showed the trace tree when phase detection is not
performed. The traces for all three values of select are con-
tained in one trace tree. With phase detection, the trace tree
is similar at first. The first call of the method integrate()
with the select value 0 is too short to be detected as its
own phase. Then the traces for the select values 1 and 2
are added to the trace tree. The loop is executed frequently
enough so that the phase detection code is executed several
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void do() {
res[@0][@] = integrate(0, 2, 1000, 90);

for (int i = 1; i < rows; i++) {
res[0][1i] integrate(@, 2, 1000, 1);
res[1][1i] integrate(@, 2, 1000, 2);

(a) Original version

void do() {

res[0][@] = integrate(0, 2, 1000, 0);

for (int i = 1; i < rows; i++) {
res[@0][i] = integrate(@, 2, 1000, 1);

for (int i = 1; 1 < rows; i++) {
res[1][i] = integrate(@, 2, 1000, 2);

(b) Modified version

Figure 8: Java Grande Series example.

times. Because the method integrate() is no longer called
with the select value 0, the trace counter for this path is 0.
This means that the original trace tree is deleted and trace
recording starts anew. This time, only the traces for the
select values 1 and 2 are recorded. Figure 9(a) shows the
resulting trace tree. This trace tree is smaller and requires
fewer guard instructions to be executed because the com-
parison select == 0 is no longer needed.

The modified source code of Figure 8(b) shows a different
behavior. Because both loops are executed frequently, each
loop is detected as a separate phase for the method inte-
grate(). In the first phase, the only select value is 1, so
there is only one trace in the trace tree. The guard with the
comparison select == 1 is now loop invariant and therefore
moved to the loop header by the loop invariant code motion.
Therefore, no check for the select value is performed inside
the loop body, the machine code is specialized only for a sin-
gle value. Figure 9(b) shows the resulting trace. When the
first loop ends and the second loop with the select value 2
is executed, the guard fails and a side exit is taken to the
interpreter. Phase detection then discovers that the trace
is dead and recording starts anew. This time, the only se-
lect value is 2, so the machine code is specialized for this
value, as shown in Figure 9(c). In summary, the modified
example now has two stable phases, and the machine code
is optimized for each phase separately.

4. PHASESBASED ON DATA FLOW

Trace compilation and phase detection complement each
other well: trace counters are a good input data for phase
detection, and phases can be easily used to guide optimiza-
tions of the trace compiler. A trace is recorded during an
actual execution in the interpreter with specific values for
all local variables and computations. It represents a class
of equivalent executions, however the compiler can decide
about the size of this equivalence class—it can cover all ex-
ecutions that follow the same control flow, or it can only
cover executions with exactly the same values. The latter
is clearly an overspecialization that is not useful in practice,
but treating some rarely changing values as constants during
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Figure 9: Stable state traces for Series benchmark.

compilation and performing constant folding is a beneficial
optimization. Phase detection allows all kinds of such spe-
cializations.

Traditionally, phases were defined only on control-flow
properties such as profiles of program counters or condi-
tional branches. However, the abstract problem definition
and the computation of the similarity value is not specific
to this. To specialize on certain data value properties in
our system, it is only necessary to insert a guard instruc-
tion at the beginning of the trace. If the condition does no
longer hold, a side exit is taken immediately after the trace
execution has started. The counter for the side exit is incre-
mented as usual. When the side exit is taken repeatedly, the
algorithm presented in the previous section detects this as a
phase change and handles it appropriately. Phase detection
based on data flow extends the control-flow based approach,
i.e., phases based on control flow are still detected even if no
stable data values can be detected.

Any kind of specialization on concrete data values is sup-
ported by phase detection based on data flow. For scalar
values, the code could be specialized for a certain range of
values in order to eliminate, e.g., array bounds checks. For
object values, the code could be specialized for objects of a
certain type so that the compiler can eliminate type checks
inside the loop. In our prototype implementation, we sup-
port only scalar variables that have a constant value because
this information is easy to use for compiler optimizations:
when it is known that a variable has always the same value,
it can simply be replaced by a constant, and constant fold-
ing can optimize subsequent operations on this value. To
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void daxpy(int n, double da, double dx[],
int dx_off, double dy[], int dy_off) {

for (int 1 = 0; i < n; i++) {
dy[i + dy_off] += da * dx[i + dx_off];
}
}

Figure 10: Java Grande LUFact example.

detect constant values, we instrument the interpreter to col-
lect profile information at every backward branch, i.e., the
interpreter compares the current values of the local variables
with the values at the time of the previous backward branch
and sets a flag whether the value is different or equal. Only
local variables where the value was equal are then treated
as constants during compilation. The profiling phase can be
short and sketchy because phase detection corrects imper-
fect profiles with a low overhead.

4.1 Example

Figure 10 shows the most important computation loop of
the Java Grande LUFact benchmark. The loop performs ar-
ray accesses and arithmetic operations that involve mostly
loop-invariant variables. They can be replaced by constants
when it is known that the values are stable across many
method invocations. Figure 11(a) shows the trace tree of
the loop without phase detection. It consists of only one
trace because there is no control flow inside the loop. The
trace instructions are already low level instructions at a com-
piler state shortly before code generation, i.e., the array ac-
cesses have been lowered to memory accesses that use the
indexed addressing mode. All trace instructions can be di-
rectly mapped to one machine instruction, only the guards
require a compare and a conditional branch at the machine
level.

The short profiling period during interpretation shows
that the local variables n, dx_off, and dy_off have constant
scalar values, while the values of da and i are changing. The
variables this, dx, and dy are object references and there-
fore excluded by our analysis. The compiler assumes that n,
dx_off, and dy_off are constant and replaces all uses with
the appropriate constant values, which are 499, 1, and 1 in
our case. It would be possible to replace da and even the
initial value of i, which is changed inside the loop, with con-
stants, but then the machine could not be re-used for even
the next invocation of the method daxpy(), i.e., the phase
would be extremely short. Figure 11(b) shows the resulting
trace. Before the loop, guard instructions are inserted that
trigger a side exit to the interpreter in case the assumption
no longer holds. In the loop body, constant folding was able
to eliminate two add instructions by folding them into the
address arithmetic of the memory accesses. Additionally,
the guard at the loop entry now has a constant operand.

After thousands of loop iterations, the method is called
with different arguments, so the guards fail and side exits
to the interpreter are taken. This leads to a rapid increase
of the side exit counters while the trace counter drops to 0.
The trace is deleted and the analysis starts anew. This time,
different but still constant values are detected for the vari-
ables, so the trace is again specialized for the new values.
Figure 11(c) shows the optimized trace for the second phase.
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Figure 11: Traces when phase state is stable for Java Grande LUFact benchmark.

5. EVALUATION

We implemented trace-based phase detection for a re-
search Java VM that is written entirely in Java itself. Our
VM consists only of the interpreter and the JIT compiler.
The VM runs on top of a host VM and delegates complex op-
erations such as garbage collection and class loading to this
host. This reduces the implementation effort and allows us
to focus on compiler optimizations, while still supporting all
parts of the Java VM specification. Writing the interpreter
for Java in Java ensures not only type safety and platform
independence, but also simplifies integration of the trace
recorder and JIT compiler. However, some workarounds are
necessary to invoke the machine code generated by the com-
piler directly from Java code, and it does not support mul-
tiple threads yet. While our system is a good playground
for compiler optimizations, it has not yet been tuned for
execution performance of large-scale applications.

All measurements were performed on an Intel Core 2 Duo
processor T8300 with two cores at 2.4 GHz and 4 GByte
main memory, running Mac OS X 10.5.4. The host Java VM
was the Java 6 VM provided by Apple, i.e., the 64-bit Java
HotSpot server VM 1.6.0_05. A large heap size was used
to ensure that garbage collection does not affect the results.
We use the Java Grande benchmark suite [3] for evaluation.
It consists of several mathematical kernels of different code
complexity. The computations are performed in loops, so
Java Grande is well suited for our research VM. Our system
traces only loops, however this is not a general limitation of
trace compilation and trace-based phase detection.

5.1 Phase Statistics

This section presents statistics about the phases detected
in the benchmarks. We compare phase detection using only
control flow (as described in Section 3) and phase detection
using data flow (as described in Section 4). For the baseline
numbers, phase detection is disabled. All numbers of this
section use a chunk size of 50, i.e., a check for a phase change
occurs after 50 side exits have been taken.

Figure 12 shows the results for the benchmarks. The first
three columns show general statistics of trace compilation.
The overall number of trace trees, i.e., the number of hot
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loops that are detected, is usually quite low. On the one
hand, the mathematical computations of the benchmarks
are concentrated in few loops, on the other hand trace com-
pilation effectively filters out unimportant code that sur-
rounds the main computation loops. The maximum and
the average number of traces per trees is also low. The most
complex benchmark is MonteCarlo with 19 trees and a max-
imum of 11 traces per tree.

When phase detection based on control flow is enabled,
the number of trace trees with phases is mostly equal to the
overall number of trace trees. This is the expected result
because a trace tree with one phase means that the behavior
is stable for the entire time the loop is executed. Trace trees
without a phase are executed long enough to get recorded,
but too short for a phase to be detected. If a trace tree has
more than one phase, a phase change is detected. The last
but one column of this column group shows the number of
trace trees that are deleted, i.e., the number of times a trace
tree had unexecuted traces that were eliminated via phase
detection. Finally, the last column shows the percentage
of loop iterations that are executed in a stable phase. The
remaining iterations are also spent in compiled code, but
before the phase is stable or between stable phases. Loop
iterations in the interpreter can be neglected because their
number is low.

The Series benchmark shows the results that can be ex-
pected from the explanation in Section 3.3. We present
the results for the original version and our modified ver-
sion of the benchmark. The original version has only one
stable phase. Before this phase is detected, the trace tree is
deleted once to eliminate the unexecuted trace for the se-
lect value 0. The modified version has two stable phases,
and the trace tree is deleted twice. Another benchmark with
phase changes is the FFT benchmark, where 4 phases are
detected for one method and 3 phases for another.

Phase detection based on data flow increases the num-
ber of detected phases for many benchmarks. Additionally,
constant local variables are also discovered for trace trees
that still have only one phase. The maximum number of
constant local variables per trace tree is 5 for a tree of the
FFT benchmark. This tree has 28 phases with varying val-



no phase detection phases using control flow phases using data flow

trees | traces pertree |trees w/| phases pertree | deleted | % iter. |trees w/| phases pertree | deleted | % iter. const locals

max avg. | phases| max avg. trees |in phase| phases | max avg. trees |in phase| max avg.
Series 3 3 1.67 1 1 1.00 1 99.1 1 1 1.00 1 99.5 1 1.00
Series (modified) 3 3 1.67 1 2 2.00 2 98.5 1 2 2.00 2 98.8 2 2.00
LUFact 4 4 2.00 4 1 1.00 0 99.4 4 384 | 96.75 383 71.2 3 297
HeapSort 3 2 1.33 3 1 1.00 0 89.9 3 2 1.33 1 98.9 1 0.25
SOR 3 3 2.33 3 1 1.00 0 99.7 3 1 1.00 0 99.7 4 2.00
Crypt 3 2 1.33 3 1 1.00 0 974 3 1 1.00 0 97.4 0 0.00
FFT 8 4 1.75 8 4 1.63 5 97.3 8 28 5.13 47 90.1 5 3.46
SparseMatmult 4 2 1.25 3 1 1.00 0 99.3 3 1 1.00 0 99.3 1 0.67
MonteCarlo 19 1 1.74 19 1 1.00 0 99.1 19 3 1.1 4 99.1 4 0.67
RayTracer 2 5 3.00 2 1 1.00 0 99.9 2 1 1.00 0 99.9 0 0.00

Figure 12: Phase detection statistics for Java Grande benchmarks.

ues of these variables. Because of the increased number of
phase changes, the percentage of loop iterations that are in
a phase is lower compared to control-flow based phase de-
tection. The trace tree of the benchmark LUFact that was
used as the example in Section 4.1 shows the highest number
of phases. Three local variables are replaced by constants
that change in each phase. The exact number of phases de-
pends on the chunk size. The theoretical maximum would be
500 phases because the method is called with 500 different
parameters, but this would require a small chunk size that
is not useful in practice. Our default configuration detects
383 phases that are long enough to be relevant in practice.

Figure 13 shows the details of the phase behavior for this
trace tree. The x-axis of the diagrams show the profile time,
i.e., a number that is increased at every side exit. The simi-
larity values for phase detection that are computed at these
points are shown on the y-axis. The similarity value is al-
ways between 0 and 1, where 0 means no similarity and 1
means perfect similarity. The part of the similarity graph
in Figure 13(a), which shows the first phases of the trace
tree, is highly regular: at first, a new phase is detected after
about 500 side exits. However, each new phase is slightly
shorter than the previous.

Figure 13(b) shows a part of the trace tree where the
phases are already much shorter. They have a length of
only about 100 side exits. When the length drops below a
threshold, the phase is too short to be detected as stable.
The local variables change before their constant value can be
identified. This leads to a final phase where no specialization
based on data flow is performed. This phase is then stable
for the remaining time of the benchmark run.

5.2 Impact of Chunk Size

The most important configuration parameter of phase de-
tection is the chunk size. A large chunk size leads to infre-
quent checks for phase changes and therefore reduces the
impact of outliers and noise in the application behavior.
However, it also leads to a long response time on phase
changes, i.e., a phase change is detected later than with a
small chunk size. Short phases can also not be detected with
a large chunk size. The chunk size should therefore be as
small as possible. In our system, a chunk size of 50 showed
good results. Figure 14 shows the impact when the chunk
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size is further reduced for one trace tree of the HeapSort
benchmark.

The corresponding trace tree has about 10 different side
exits that are taken, so it has a reasonably complex control
flow. We show the similarity values for a chunk size of 10, 20,
and 50. With a chunk size of 10, the similarity value is quite
noisy and frequently drops below 0.5, which we consider the
threshold for a phase change. This would lead to a high
number of phases although the application behavior does
not change. With a chunk size of 20, the similarity value
is above 0.6, and with a chunk size of 50 there are no more
outliers that lead to false phase changes. The response time
is still good because an actual phase change is detected after
50 invocations of the trace tree in the new phase.

6. RELATED WORK

Hind et al. provide an abstract definition of phase detec-
tion (called phase shift detection in their work) [10]. When
the two functions granularity and similarity are defined, an
input string can be split into phases. They then provide
suitable definitions for granularity and similarity that lead
to a well-behaving system where certain properties like hav-
ing a unique solution can be proven. Our phase detection
algorithm and our similarity formula follow these sound defi-
nitions. They evaluate their system using a profile of all con-
ditional branches collected from various Java benchmarks.
Because the profile spans the whole application run, they de-
tect global phases, while our system detects phases locally
per trace.

Nagpurkar et al. present a framework for online phase
detection algorithms, define a large class of online phase
detectors, and evaluate their accuracy [14]. The baseline
for the accuracy comparison is an offline profile analysis,
considering loops and repeated method invocations at the
source code level. They use several Java benchmarks to
compare the impact when different parameters of the phase
detection algorithms are modified, like the window policy
and the model policy. Similar to Hind et al. the input data
for phase detection are profiles of conditional branches, and
they consider only global application phases.

Das et al. use local phase detection to perform region mon-
itoring [4]. They discovered that their earlier approach us-
ing global phase detection did not yield information that
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Figure 14: Similarity values for the HeapSort benchmark, method NumericSortTest.NumSift ().

was useful for dynamic optimization systems.Therefore, they
treat each code region individually. Although they mention
traces as one definition of a local region, they do not use
traces themselves. They form regions based on the value of
the program counter at a certain sampling interval, which
requires statistical correlation coefficients. In contrast, our
formulas are much easier because our counters are already
tied to a certain trace, i.e., to a range of program counters.
They evaluate their approach using benchmarks from the
SPEC CPU2000 benchmark suite, but do not describe an
actual use of the phase information.

Gu et al. perform phase detection using hardware perfor-
mance counters that track L1 cache misses [9]. They state
that the cache miss rate correlates well with the method
execution behavior. The phase information is then used to
schedule method recompilation at different optimization lev-
els in a Java VM. This approach is similar to our use of the
phase information, however they operate at the granularity
of methods.

Shen et al. predict global phases using an offline profiling
phase and then transform the program using binary rewrit-
ing [15]. Phases start at inserted marker points, and the
first few executions of a phase are used to predict all later
executions. They explore the repeated access of variables
(memory cells) for phase behavior, but they do not look at
the actual values of the variables.

Sherwood et al. propose the use of Basic Block Vectors
(BBVs) to capture and detect phase behavior [16]. BBVs
are used for counting the frequency of basic block execution
for a given interval. They perform a basic block distribution
analysis to find small portions of the program that represent
the behavior of the full program. Phase information is used
to find preferred simulation points in the application in order
to achieve a representative sample of its execution. In [17]
they define a unified profile architecture that can capture,
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classify, and predict next phase changes. Their phase tracker
can be used to trigger hardware or software optimization.

Dhodapkar at al. use instruction working set signatures
to detect phase changes [5]. Phase changes are detected
by comparing consecutive signatures, using a metric called
the relative signature distance. When the relative signa-
ture distance exceeds a certain threshold, a phase change is
detected. Dynamic microarchitecture reconfiguration is in-
voked in response to the phase changes. In [6] they present
a comparison of three phase detection techniques based on
basic block vectors, instruction working sets and conditional
branch counts.

Kistler et al. present a system for continuous program op-
timization [13]. They profile the application and use this
data to schedule recompilations with different compiler op-
timizations. If the profiling data changes between two con-
secutive time stamps, a change in the application behavior
is detected. Although not called phase change in the paper,
the definition is similar.

Gal et al. introduce trace-based compilation and trace
trees [7, 8]. They integrate trace recording and trace compi-
lation into the JamVM, a lightweight Java VM for embedded
devices, as well as into the TraceMonkey JavaScript VM.
Before utilizing traces for compilation, they were used in
the binary optimization system Dynamo [2]. In this system,
machine code is optimized at run time, which differs from
compilation of Java bytecodes because machine code misses
all of the high-level information that bytecodes provide.

In contrast to traditional compilation at the granularity of
methods, traces cover only frequently executed loops which
start and end in the middle of methods. This can be seen
as an advanced combination of on-stack replacement (OSR)
and deoptimization. OSR [12] allows the transition to ma-
chine code for long running loops whose execution started in
the interpreter. Deoptimization [11] stops the execution of



machine code in the middle of a method so that execution
continues in the interpreter. However, both are expensive
operations that are not intended for frequent use, as it would
be required for phase change detection.

7. CONCLUSIONS

We presented a novel method for local phase detection
that is based on trace compilation. Counters are incre-
mented at the backward branch of traces and when traces are
exited at side exits. When the distribution of the counter
values in the current period is significantly different from
the previous period, a phase change is detected. We use the
information about stable phases to guide compiler optimiza-
tions. Because the counter values of traces are already at
a high granularity, more complex definitions of a phase are
possible than in other approaches. This allows us to define
phases based on data flow, e.g., to begin a new phase when
the value of a local variable changes. The evaluation showed
that our approach identifies phases for several benchmarks.
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