
Optimized Interval Splitting
in a Linear Scan Register Allocator ∗

Christian Wimmer
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

wimmer@ssw.jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

moessenboeck@ssw.uni–linz.ac.at

ABSTRACT
We present an optimized implementation of the linear scan
register allocation algorithm for Sun Microsystems’ Java
HotSpotTM client compiler. Linear scan register allocation
is especially suitable for just-in-time compilers because it is
faster than the common graph-coloring approach and yields
results of nearly the same quality.

Our allocator improves the basic linear scan algorithm
by adding more advanced optimizations: It makes use of
lifetime holes, splits intervals if the register pressure is too
high, and models register constraints of the target archi-
tecture with fixed intervals. Three additional optimizations
move split positions out of loops, remove register-to-register
moves and eliminate unnecessary spill stores. Interval split-
ting is based on use positions, which also capture the kind
of use and whether an operand is needed in a register or not.
This avoids the reservation of a scratch register.

Benchmark results prove the efficiency of the linear scan
algorithm: While the compilation speed is equal to the old
local register allocator that is part of the Sun JDK 5.0, in-
teger benchmarks execute about 15% faster. Floating-point
benchmarks show the high impact of the Intel SSE2 exten-
sions on the speed of numeric Java applications: With the
new SSE2 support enabled, SPECjvm98 executes 25% faster
compared with the current Sun JDK 5.0.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization, Code generation

General Terms
Algorithms, Languages, Performance

Keywords
Java, compilers, just-in-time compilation, optimization, reg-
ister allocation, linear scan, graph-coloring

∗This work was supported by Sun Microsystems, Inc.

c© ACM, 2005. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, pp. 132–141.
VEE’05,June 11–12, 2005, Chicago, Illinois, USA.
http://doi.acm.org/10.1145/1064979.1064998

1. INTRODUCTION
Register allocation is one of the most profitable compiler

optimizations. It is the task of assigning physical registers to
local variables and temporary values. The most commonly
used algorithm treats the task of register allocation as a
graph-coloring problem [1][2]. It uses an interference graph
whose nodes represent the values that should get a register
assigned. Two nodes are connected with an edge if they
are live at the same time, i.e. when they must not get the
same register assigned. Then the graph is colored such that
two adjacent nodes get different colors, whereby each color
represents a physical register. The graph-coloring algorithm
generates code of good quality, but is slow for just-in-time
compilation of interactive programs because even heuristic
implementations have a quadratic runtime complexity.

In comparison, the linear scan algorithm is simpler and
faster and yields results of nearly the same quality. Life-
time intervals store the range of instructions where a value
is live. Two intersecting intervals must not get the same
register assigned. The algorithm assigns registers to values
in a single linear pass over all intervals. The basic linear
scan algorithm [12][13] can be extended to support holes in
lifetime intervals and the splitting of intervals [17].

We implemented and extended the linear scan algorithm
for the Java HotSpotTM client compiler [4] of Sun Microsys-
tems. The compiler is invoked by the Java HotSpotTM VM
[16] for frequently executed methods. The client compiler
is designed as a fast compiler that omits time-consuming
optimizations, achieving a low startup and response time.
For this reason, the current product version of the client
compiler uses only a local heuristic for register allocation.

In contrast, the Java HotSpotTM server compiler [10] pro-
duces faster executing code, but at the cost of a more than
ten times higher compilation time. This is not suitable for
client applications because of the higher response time. Lin-
ear scan register allocation for the client compiler reduces
the gap of peak performance between the two compilers
without degrading the response time of the client compiler.

This paper presents the details of a successful implemen-
tation of the linear scan algorithm for a production-quality
just-in-time compiler. The paper contributes the following:

• We introduce use positions to decide which interval is
to be spilled. They mark instructions where a lifetime
interval should or must have a register assigned.

• We present three fast optimizations—optimal split po-
sitions, register hints and spill store elimination—that
improve the code quality without a data flow analysis.

132

• We compare our research compiler with the client com-
piler and the server compiler of the Sun JDK 5.0.
The measurements show that the linear scan algorithm
decreases the run time of compiled code without in-
creasing the compilation time when compared with the
product client compiler.

2. DATA STRUCTURES
Our version of the HotSpotTM client compiler uses two

intermediate representations: When a method is compiled,
the front end transforms bytecodes to the graph-based high-
level intermediate representation (HIR) that uses SSA form
[3][8]. Several optimizations are applied before the back end
converts the HIR to the low-level intermediate representa-
tion (LIR). After linear scan register allocation, machine
code is created from the LIR. More details of the compiler
architecture can be found in [18]. The compiler can gen-
erate code for the Intel IA-32 architecture and the SPARC
architecture of Sun. The examples and measurements in
this paper are given for the IA-32 architecture.

2.1 Intermediate Representation
The linear scan algorithm operates on the LIR that is

conceptually similar to machine code. It allows platform-
independent algorithms that would be difficult to implement
directly on machine code. Each basic block of the control
flow graph stores a list of LIR instructions. Before register
allocation, all basic blocks are sorted into a linear order: The
control flow graph is flattened to a list using the standard
reverse postorder algorithm. To improve the locality, all
blocks belonging to a loop are emitted consecutively. Rarely
executed blocks such as exception handlers are placed at the
end of the method.

An operand of a LIR instruction is either a virtual register,
a physical register, a memory address, a stack slot of the
stack frame, or a constant. While the number of virtual
registers is unlimited, the number of physical registers is
fixed by the target architecture. When the LIR is generated,
most operands are virtual registers. The register allocator
is responsible for replacing all virtual registers by physical
registers or stack slots.

2.2 Lifetime Intervals
For each virtual register, a lifetime interval is constructed

that stores the lifetime of the register as a list of disjoint
ranges. In the simplest case, there is only a single live range
that starts at the instruction defining the register and ends
at the last instruction using the register. More complicated
intervals consist of multiple ranges. The space between two
ranges is commonly referred to as a lifetime hole.

In order to create accurate live ranges, a data flow analysis
is performed before the intervals are built. This is necessary
to model the data flow in a non-sequential control flow. For
example, an operand that is used once in a loop must be
alive in the entire loop; otherwise it would not be available
in further iterations.

2.3 Use Positions
The use positions of an interval refer to those instructions

where the virtual register of this interval is read or written.
They are required to decide which interval is to be split and
spilled when no more physical registers are available. They

are also used to determine when a spilled interval must be
reloaded into a register.

Each use position has a flag denoting whether it requires
the value of the interval to be in a register or not: If the use
position must have a register, the register allocator guaran-
tees that the interval has a register assigned at this position.
If the interval was spilled to memory before this position, it
is reloaded into a register. This avoids the reservation of
a scratch register for temporary computations. If the use
position should have a register, then the interval may be
spilled. This allows the modeling of machine instructions of
the IA-32 architecture that can handle memory operands.

Together with the lifetime intervals, use positions form a
clear interface between the register allocator and the rest of
the compiler. This is beneficial for the speed of the allo-
cation because accessing the LIR, especially iterating over
instructions or operands, was identified as the most time-
consuming part. To get the next use of an interval, we must
access only the next element in the list without scanning
multiple instructions. Changes in the LIR, e.g. the addition
of new instructions, do not require any change in the reg-
ister allocator. Additionally, use positions avoid platform-
dependent code in the allocator.

2.4 Fixed Intervals
Some machine instructions require their operands in fixed

registers. Such constraints are already considered during
the construction of the LIR by emitting physical register
operands instead of virtual register operands. Although the
register allocator must leave these operands unchanged, they
must be considered during register allocation because they
limit the number of available registers. Information about
physical registers is collected in fixed intervals.

For each physical register, one fixed interval stores where
the register is not available for allocation. Use positions
are not needed for fixed intervals because they are never
split and spilled. Register constraints at method calls are
also modeled using fixed intervals: Because all registers are
destroyed when the call is executed, ranges of length 1 are
added to all fixed intervals at the call site. Therefore, the
allocation pass cannot assign a register to any interval there,
and all intervals are spilled before the call.

2.5 Example
Figure 1 illustrates the lifetime intervals for an instruction

sequence. The four virtual registers v1 to v4 are represented
by the intervals i1 to i4. Use positions are denoted by black
bars. The fixed intervals of all registers but ecx are collapsed
to a single line because they are equal.

The interval i1 has a lifetime hole from 10 to 24, which
allows the allocator to assign the same register to i1 and
i2. The shift instruction requires the second operand in the
fixed register ecx, so a range from 20 to 22 is added to the
fixed interval for ecx. All registers are destroyed at the call
instruction 16, so a short range of length 1 is added to all
fixed intervals.

To allow ranges that do not extend to the next instruction,
the instruction numbers are always incremented by 2, i.e.
only even numbers are used. Therefore, the ranges from 16
to 17 do not interfere with the allocation of i4 starting at
18. Additionally, the numbering by two allows the allocator
to insert spill loads and stores at odd positions between two
instructions.

133

i2

i3

i4

10 2416

10: v2 = v1

12: v3 = 10

14: v3 = v3 + v2

16: call foo()

18: v4 = v3

20: ecx = v2

22: v4 = v4 << ecx

24: v1 = v4

i1

eax,ebx,edx,esi,edi

ecx

12 14 18 20 22

Figure 1: Instruction sequence with lifetime intervals and use positions.

3. LINEAR SCAN ALGORITHM
The main allocation loop processes all lifetime intervals

in the order of increasing start positions. The interval cur-
rently processed is called the current interval. The start
position of this interval, called position, divides the remain-
ing intervals into the following four sets:

• Unhandled intervals start after position.

• Active intervals cover position and have a physical reg-
ister assigned.

• Inactive intervals start before and end after position,
but do not cover it because of a lifetime hole.

• Handled intervals end before position or are spilled to
memory.

The algorithm LinearScan (see Figure 2) illustrates how
the sets are adjusted before a register is selected for current :
Intervals from active that do not cover position are either
moved to handled if they end before position or moved to
inactive otherwise. Similarly, intervals from inactive are
moved to handled or active.

The selection of a register for current operates in two
stages: First, the algorithm TryAllocateFreeReg (see
Figure 4) tries to find a free register without spilling an
interval. In the best case, a register is free for the entire life-
time, but it is also sufficient if a free register is found only
for the beginning of the interval. If no free register is found,
AllocateBlockedReg (see Figure 5) tries to make a reg-
ister free by spilling one or several intervals. The spilling
decision is based on the use positions; the interval not used
for the longest time is spilled. The next sections present the
details of these algorithms.

3.1 Allocation without spilling
The algorithm TryAllocateFreeReg (see Figure 4) is

used for allocation without spilling. All active intervals and
all inactive intervals that intersect with current possibly af-
fect the allocation decision. They are used to compute the
freeUntilPos for each physical register. Each register is avail-
able for allocation until its freeUntilPos.

If a register is already assigned to an active interval, it
must be excluded from the allocation decision. This is rep-
resented by a freeUntilPos of 0. For inactive intervals, the
freeUntilPos is set to the next intersection with current be-
cause the register is not available after this position. If the
freeUntilPos for one register is set multiple times, the min-
imum of all positions is used. The register with the highest
freeUntilPos is searched and used for allocation.

LINEARSCAN

unhandled = list of intervals sorted by increasing start positions

active = { }; inactive = { }; handled = { }

while unhandled { } do

current = pick and remove first interval from unhandled

position = start position of current

// check for intervals in active that are handled or inactive

for each interval it in active do

if it ends before position then

move it from active to handled

else if it does not cover position then

move it from active to inactive

// check for intervals in inactive that are handled or active

for each interval it in inactive do

if it ends before position then

move it from inactive to handled

else if it covers position then

move it from inactive to active

// find a register for current

TRYALLOCATEFREEREG

if allocation failed then ALLOCATEBLOCKEDREG

if current has a register assigned then add current to active

Figure 2: Basic linear scan algorithm.

Three cases must be distinguished, as illustrated in Fig-
ure 3. In all three examples, the intervals i1 and i2 already
occupy the physical registers r1 and r2. No other regis-
ters are available for allocation. Interval i3 is the current
interval for allocation.

• In Figure 3 a), the intervals i2 and i3 do not intersect,
so r2 is available for the whole lifetime of i3. This is
represented by a high freeUntilPos (the maximum in-
teger number is used). The interval i3 gets the register
r2 assigned and the allocation completes successfully;
no interval must be split.

• In Figure 3 b), the freeUntilPos of r2 is set to 16 be-
cause i2 and i3 intersect. The register r2 is available
only for a part of i3, so i3 is split at position 16.
The split child, a new interval starting at position 16,
is added to the unhandled set and will be processed
later. The allocation completes successfully.

• In Figure 3 c), both registers are blocked by active
intervals, so their freeUntilPos is 0. It is not possible
to allocate a register without spilling. The first stage
of allocation fails.

134

i1

i2

i3

10

r1

r2

1612 14

i1

i2

i3

10

r1

r2

1612 14

i1

i2

i3

10

r1

r2

1612 14

a) Normal allocation b) Splitting of current c) No allocation possible

Figure 3: Examples of allocation without spilling.

TRYALLOCATEFREEREG

set freeUntilPos of all physical registers to maxInt

for each interval it in active do

freeUntilPos[it.reg] = 0

for each interval it in inactive intersecting with current do

freeUntilPos[it.reg] = next intersection of it with current

reg = register with highest freeUntilPos

if freeUntilPos[reg] = 0 then

// no register available without spilling

allocation failed

else if current ends before freeUntilPos[reg] then

// register available for the whole interval

current.reg = reg

else

// register available for the first part of the interval

current.reg = reg

split current before freeUntilPos[reg]

Figure 4: Allocation without spilling.

Assigning a register only for the first part of an interval is
an important optimization, especially for architectures with
few registers. Long intervals can switch between different
registers, so the probability for spilling is lower. In addition
to that, interval splitting is necessary to handle method calls
when compiling for the Intel IA32 architecture: Since all reg-
isters are considered as blocked at a method call, an interval
spanning a call site can never get a register for its entire life-
time. Such intervals are split automatically before the call.
They start in a register, then they are split and spilled at
the call site and later reloaded to a register if necessary.

If more than one register is available for the whole lifetime
of an interval, the selection is based on how these registers
are used after the end of the interval: The register that is
blocked first by a fixed interval is selected. This optimizes
the use of callee-saved registers available on architectures
like SPARC: Because caller-saved registers are blocked at
each method call, they are preferred when registers of both
kinds are available. The callee-saved registers are kept free
for intervals spanning method calls.

3.2 Spilling of Intervals
When more intervals are simultaneously live than phys-

ical registers are available, spilling is inevitable. Finding
the optimal interval for spilling, i.e. the one with the small-
est negative impact on the overall performance, would be
too time-consuming. Instead, we apply a heuristic that is
based on the use positions of the active and inactive inter-
vals: The interval that is not used for the longest time is
spilled. This interval is selected by the algorithm Allo-
cateBlockedReg (see Figure 5).

The nextUsePos for each physical register is computed
from the use positions of the active and inactive intervals.

ALLOCATEBLOCKEDREG

set nextUsePos of all physical registers to maxInt

for each interval it in active do

nextUsePos[it.reg] = next use of it after start of current

for each interval it in inactive intersecting with current do

nextUsePos[it.reg] = next use of it after start of current

reg = register with highest nextUsePos

if first usage of current is after nextUsePos[reg] then

// all other intervals are used before current,

// so it is best to spill current itself

assign spill slot to current

split current before its first use position that requires a register

else

// spill intervals that currently block reg

current.reg = reg

split active interval for reg at position

split any inactive interval for reg at the end of its lifetime hole

// make sure that current does not intersect with

// the fixed interval for reg

if current intersects with the fixed interval for reg then

split current before this intersection

Figure 5: Allocation with spilling.

If the nextUsePos for one register is set multiple times, the
minimum of all positions is calculated. This number denotes
when the register is used for the next time. The register
with the highest nextUsePos is selected because this frees a
register for the longest possible time. If the first use position
of current is found after the highest nextUsePos, it is better
to spill current itself. It is split before its first use position
because there it must be reloaded. All other intervals are
not changed and remain in their registers.

Figure 6 shows two examples with slightly different in-
tervals. The ranges are equal, only the use position of in-
terval i3 is different. Again, only two physical registers r1

and r2 are available for allocation. The intervals i1 and i2

have already the registers r1 and r2 assigned. Interval i3 is
the current interval for allocation. Normally, each interval
starts with a use position as in Figure 6 a), but situations
like Figure 6 b) can occur for split children.

The calculated nextUsePos of r1 is 12, the nextUsePos
of r2 is 14 in both examples. Therefore, r2 is the best
candidate for allocation. In Figure 6 a), the interval i3 is
used at position 10, before the nextUsePos of r2. So the
interval i2 is split at position 10 to free the register r2,
which is then assigned to i3. In Figure 6 b), the interval i3
is used at 16. This position is higher than the nextUsePos
of r2, so the current interval i3 is spilled itself. Because the
use position at 16 requires a register, i3 is split before this
position. The split child with the use position at 16 will get
a register later when it is processed.

135

i1

i2

i3

10

r1

r2

1612 14

i1

i2

i3

10

r1

r2

1612 14

a) Spilling of intersecting interval b) Spilling of current

Figure 6: Examples of allocation with spilling.

Even with spilling, it is possible that no register is avail-
able for the whole lifetime of current : When all registers
are blocked by fixed intervals, e.g. because of a method call,
current must be split before the intersection with the fixed
interval. It is assigned a register for the first part of its
lifetime as described in the previous section.

If an interval is used in a loop, it should not be spilled be-
cause this requires a load and a store in each loop iteration.
The spilling heuristic only considers future use positions,
but does not look backward to previous uses. To prevent
the spilling of intervals that are used in a loop, pseudo use
positions are inserted for them at the end of the loop just
before the backward branch. So the heuristic prefers to spill
intervals that are used after the loop instead of intervals that
are used in the loop.

3.3 Resolution
The linear scan approach to register allocation flattens the

control flow graph (CFG) to a linear list of blocks before al-
location. When an interval is split within a basic block, a
move instruction is inserted at the split position. Addition-
ally, the splitting can create conflicts at control flow edges:
When an interval is in a register at the end of the predeces-
sor, but is expected on the stack at the start of the successor
(or vice versa), a move instruction must be inserted to re-
solve the conflict. This can happen if an interval flows into
a block via two branches and is split in one of them. In this
case, the incoming interval resides in different locations and
a move instruction must be inserted.

For resolution, all control flow edges are iterated in a sep-
arate pass. If the locations of intervals at the end of the
predecessor and the start of the successor differ, appropri-
ate move instructions are inserted. Care must be taken to
order the moves if the same register is used as input and
output of moves. Our resolution algorithm is similar to the
one in [17].

3.4 Exception Handling
Many Java bytecodes can throw runtime exceptions, e.g.

if null is dereferenced, if an array index is out of bounds
or a number is divided by 0. Therefore, exception han-
dling must be designed carefully so that it does not slow
down the normal execution where no exceptions are thrown.
In particular, splitting a basic block after each potential
exception-throwing instruction and drawing normal control
flow edges to the exception handler would fragment the non-
exceptional control flow and lead to a large number of short
basic blocks.

Instead, we maintain a list containing all instructions that
may branch to an exception handler. The SSA-based front
end creates phi functions at the start of the exception han-
dler if a local variable has different values at different throw-
ing instructions. For a naive resolution of the phi functions,

an adapter block that stores the resulting moves would have
to be created for each edge from an instruction to an excep-
tion handler.

To reduce the number of adapter blocks, we create them
lazily after register allocation: In contrast to the non-excep-
tional control flow, the phi functions of exception handlers
are still present in the LIR. During resolution, the phi func-
tions are resolved and adapter blocks are created on demand.
This saves about 75% of all adapter blocks that would be
required if the phi functions were resolved before register
allocation.

We use an extended version of the resolution algorithm
to create moves for exception edges: For phi functions, the
correct input operand must be searched first. Then a move
instruction from the operand’s interval to the phi function’s
interval is created if the locations are different. Only if
moves are necessary at an exception edge, a new adapter
block is created for them.

4. OPTIMIZATIONS

4.1 Optimal Split Positions
Large and even medium-sized methods contain many in-

tervals that must be split and spilled. The negative impact
of spilled intervals can be reduced by searching the optimal
positions for splitting, i.e. the split positions that minimize
the number of spill loads and stores executed at runtime. In
general, the position where an interval is spilled or reloaded
can be moved to a lower (i.e. earlier) position, while the up-
per bound is specified by the split position calculated by the
algorithms. The following rules are used to find an optimal
split position.

Move split positions out of loops: Loop blocks are exe-
cuted more often than blocks of a sequential control flow.
Accordingly, spilling or reloading inside a loop leads to a
higher number of memory accesses than spilling before or
after a loop. In the example in Figure 7, block B2 is con-
tained in a loop, while B1 is before the loop. Assume that
i1 must be spilled before 22 because i2 requires its regis-
ter. When the split position is moved from 22 to 18, i1 is
spilled before the loop, eliminating the spilling and reloading
in each loop iteration.

i1

10

B2: loop depth 1B1: loop depth 0

i2

12 14 16 18 20 22

CFG

24 26

Figure 7: Move split positions out of loops

136

Move split positions to block boundaries: When an interval
is split, a move instruction from the old to the new location is
inserted. If the split position is moved to a block boundary,
the move might be unnecessary because of the control flow.
In the example in Figure 8, i1 must be spilled at 16 because
its register is required by i2, but reloaded at 24. When the
split position for reloading is moved from 24 to 20, then the
spilled part affects only the block B2. No resolving move
and no spilling is needed at the edge from B1 to B3.

i1

10

B1 B2

i2

12 14 16 18 20 22

B3CFG

24 26

Figure 8: Move split positions to block boundaries

4.2 Register Hints
The most frequently occurring instructions are moves from

one virtual register to another. If the intervals for these reg-
isters do not overlap, it would be possible to coalesce them
to one larger interval. However, coalescing can also decrease
code quality because longer intervals tend to require more
spilling; many heuristics were proposed for graph-coloring
register allocators [11]. Coalescing is an expensive opera-
tion because it modifies the intermediate representation af-
ter internal data structures of the register allocator have
been built, thus leading to an iterative recreation of the
data structures until no more moves are coalesced.

Instead of coalescing intervals, we use a dynamic solution
called register hints that does not require additional com-
pilation time: When two intervals are connected only by
a move instruction, the interval for the move target stores
the source of the move as its register hint. If possible, the
target then gets the same register assigned as the source,
even if this register is not optimal according to the crite-
ria described above. In this case, the move instruction is
unnecessary and therefore deleted later on. A comparable
approach for graph coloring algorithms is called biased col-
oring [1].

4.3 Spill Store Elimination
Moves inserted for spilling can be either stores from a

register to the stack or loads from the stack to a register.
Loads are always necessary, but stores can be eliminated in
certain cases: When the stack slot is known to be up-to-
date, i.e. when it can be proven statically that the stack slot
already contains the same value as the register, the store can
be deleted. Normally, this is difficult to prove and requires
a data flow analysis, as implemented e.g. by O. Traub et
al. [17]. We identified two common cases that can be opti-
mized without a data flow analysis, but nevertheless cover
95% of all intervals:

• Method parameters are passed on the stack and loaded
before the first use. When such an interval is spilled
later, no store is necessary as long as the parameter
did not change. Especially spill stores for the fre-
quently used this-pointer of a method—passed as the
first parameter—are removed.

• Most intervals have only one instruction that defines
the value, but are used multiple times later on. If such
an interval is spilled and reloaded several times, we
insert a spill move directly after the definition. There-
fore, the stack slot is up-to-date in all possible code
paths, and all further stores to this stack slot can be
eliminated.

4.4 Evaluation
To measure the impact of the three optimizations, we ex-

ecuted the SPECjvm98 benchmark suite [15] without opti-
mizations, with only one optimization activated and with all
three optimizations activated together. Table 1 shows the
number of register-to-register moves, spill loads and spill
stores executed. Interval splitting and lifetime holes are en-
abled in all configurations because they are required for a
correct register allocation, e.g. for the handling of method
calls.

The results show that each optimization is effective for a
particular kind of moves: Splitting at the optimal position
reduces the number of spill loads and stores. This optimiza-
tion is especially effective for methods with small nested
loops. For the benchmark 222 mpegaudio, the number of
loads and stores is reduced by 25%. In average, the number
is reduced by 15%.

Register hints reduce the number of register-to-register
moves by 25%, with a maximum of 50% for the bench-
mark 227 mtrt. The measurements prove that selecting
non-optimal registers does not have negative effects on later
spilling decisions because the number of spill loads and stores
does not increase.

Spill store elimination removes 55% of all spill stores, with
a maximum of 70% for 227 mtrt. This optimization over-
laps with the optimal split positions; it is more effective for
spill stores, but does not optimize spill loads.

The last column of Table 1 shows the speedup when com-
pared to the run without optimizations activated. An overall
speedup of 4% is achieved. This speedup comes at no cost of
compilation time; there is no measurable change when the
optimizations are disabled or enabled.

million moves executed

2,553no optimization

optimal split pos.

register hints

spill store elimin.

all optimizations

speedup

2,444

2,672 2,114

1,865 2,439

2,554 2,444

1,870 2,088

1,882

1,585 1.01

1,875 1.01

834 1.03

820 1.04

reg-to-reg spill storesspill loads

Table 1: Move optimizations for SPECjvm98

million moves executed

reg-to-reg

6,493no optimization

optimal split pos.

register hints

spill store elimin.

all optimizations

spill stores

speedup

6,423

6,557 1,955

4,960 6,390

6,493 6,423

4,960 1,955

6,390

1,922 1.08

6,356 1.01

1,780 1.04

706 1.10

spill loads

Table 2: Move optimizations for SciMark 2.0

137

The optimizations are even more effective for methods
with mathematical computations because they usually con-
tain small nested loops. Table 2 shows the results for Sci-
Mark 2.0 [14], a benchmark suite for scientific and numerical
computing. Moving the split positions out of loops elimi-
nates 70% of all spill loads and stores and leads to a speedup
of 8%. With all three optimizations enabled, 90% of all spill
stores, 70% of all spill loads and 25% of register-to-register
moves are eliminated, leading to a speedup of 10%.

5. FLOATING POINT VALUES
The Intel IA-32 architecture has a floating point unit

(FPU, [6]) for floating point computations. The historic
design of the FPU complicates the compiler’s work. In par-
ticular, the following two issues must be considered:

• The internal data format of the FPU registers is not
compliant with the IEEE 754 standard for floating
point arithmetic [5] required by the Java specification.
The FPU has a higher precision than specified, so ex-
plicit rounding is necessary. Unfortunately, the only
way to round values is to store them to memory and
then reload them into a register. This undermines the
primary goal of register allocation and prohibits the
generation of effective floating-point code.

• The FPU register set is organized as a stack. It is
not possible to address registers by their number, but
only by their offset from the current stack top. This
requires an additional phase in the register allocator
that converts register numbers to stack indices using
a FPU stack simulation.

The SSE2 extensions introduced with the modern Pen-
tium 4 processors offer not only single-instruction multiple-
data (SIMD) instructions for floating point values, but also
scalar instructions that can completely replace the old FPU.
When the compiler detects that the SSE2 extensions are
present, the generated code does not use the FPU anymore.
The SSE2 instructions adhere to the IEEE standard and
allow a direct addressing of registers, so they are easier to
handle in the compiler and lead to code that executes faster,
as the benchmarks in the next section show.

6. EVALUATION
The original design goal of the Java HotSpotTM client

compiler was to provide a high compilation speed at the
possible cost of peak performance [4]. This was obtained
by omitting time-consuming optimizations. Our main goal
was the implementation of a global register allocation al-
gorithm that leads to faster executing code without a sig-
nificant compile time increase. The measurements of this
section prove that this goal was achieved. Additionally, the
measurements show the large difference between code using
the FPU and the SSE2 extensions for floating point com-
putations. Whereas numeric applications show a speedup
below average when the FPU is used, the speedup is above
average when the SSE2 extensions are enabled.

6.1 Compared Configurations
We compared our research version of the Java HotSpotTM

client compiler with the product version of the Sun JDK 5.0,
using the following four configurations:

• JDK 5.0 Client: The Java HotSpotTM client compiler
of the Sun JDK 5.0. It does not use the SSE2 exten-
sions for floating point operations.

• Linear Scan FPU: Our research version of the client
compiler with linear scan register allocation. The FPU
is used for floating point operations.

• Linear Scan SSE2: Our research version of the client
compiler, using the SSE2 extensions for floating point
operations. The compilation time is equal for both
variants of linear scan, so only one number is given.

• JDK 5.0 Server: The Java HotSpotTM server compiler
[10] of the Sun JDK 5.0, using the SSE2 extensions.

The client compiler of the JDK 5.0 uses a simple heuristic
for register allocation: In the first pass, only temporary val-
ues get a register assigned. If a register remains completely
unused in the whole method or in a loop, this register is as-
signed to the most frequently accessed local variable. Load
and store elimination are used to optimize multiple accesses
to the same local variable in one basic block.

The server compiler produces faster executing code than
the client compiler, but at the cost of a higher compilation
time. It uses a graph-coloring register allocator for global
register allocation. First, the live ranges are gathered and
conservatively coalesced; then the nodes are colored. If the
coloring fails, spill code is inserted and the algorithm is re-
peated. About half of the compilation time is spent in the
register allocator. The server compiler requires much more
time for the register allocation of a method than the client
compiler for the whole compilation.

For all measurements, the runtime library of the JDK 5.0
was used. All benchmarks were performed on an Intel Pen-
tium 4 processor 540 with 3.2 GHz, 1 MByte L2-Cache and
1 GByte of main memory, running Microsoft Windows XP
Professional. The Pentium 4 processor implements the SSE2
extensions, so direct comparisons between FPU and SSE2
code are possible. The JVM was started with the default
options; no command line flags were used.

6.2 Compile Time
We used the SPECjvm98 benchmark suite [15] to get a

reasonable set of methods compiled. Table 3 summarizes
some statistical data about the compilation. The numbers
are accumulated over all compiled methods. All of these
numbers use the physical size of the methods in bytes, not
the number of bytecodes (typical bytecodes have a size of
one to three bytes).

The row Compiled methods shows the number of times the
compiler is invoked. Compiled bytes accumulates the size of
all methods compiled, i.e. the number of bytes parsed by
the compiler. Because of different inlining strategies, the
results for the client compiler and linear scan vary slightly.
The server compiler uses a much more aggressive inlining
strategy, so the number of compiled bytes is higher. Because
the compiler is never invoked on small methods that can be
inlined, the number of compiled methods is lower.

Code size is the size of the machine code generated by the
compiler. Total size is the memory size allocated to store
the compiled code together with metadata required by the
virtual machine. The slightly higher memory footprint of
linear scan does not have a negative impact on the perfor-
mance of the JVM.

138

JDK 5.0 Client Linear Scan JDK 5.0 Server

Compiled bytes

Code size

Total size

Compilation time

Compilation speed

236,016 bytes

919,374 bytes

2,367,575 bytes

1,056 msec.

223,512 bytes/sec.

253,618 bytes

1,159,979 bytes

2,934,195 bytes

1,070 msec.

237,074 bytes/sec.

367,234 bytes

1,630,713 bytes

3,881,072 bytes

27,946 msec.

13,140 bytes/sec.

Compiled methods 1,250 methods 1,229 methods 741 methods

Table 3: Comparison of compile time

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

Number of LIR operations

A
llo

c
a

ti
o

n
 T

im
e

 [
m

s
e

c
.]

Figure 9: Time for register allocation—100 slowest methods out of 1229.

Compilation time is the total time spent in the compiler.
The lower the compilation time is, the less time is spent in
the compiler and the shorter are the pauses when a method
is compiled. The most important number is the compila-
tion speed, calculated as the quotient of compiled bytes and
compilation time.

The compilation time of linear scan and the client com-
piler are nearly equal; the compilation speed of linear scan
is even higher. This states that the linear scan algorithm
does not have a negative impact on the compilation speed,
as opposed to typical implementations of the graph-coloring
algorithm. The compilation speed of the server compiler
cannot compete with the client compiler because many time-
consuming optimizations are performed.

The time needed for linear scan register allocation mainly
depends on the size of the methods. Most methods are very
small and result in less than 200 LIR instructions. Only
about 8% of all methods compiled during SPECjvm98 are
larger. Figure 9 shows the 100 methods with the highest al-
location time of all 1,229 methods compiled. The measured
time includes the data flow analysis before building the life-
time intervals, the building of the intervals, the linear pass
over the intervals for allocation, the resolving of the data
flow after the allocation and the rewriting of the LIR with
the physical registers. Although the time includes parts that
are known to be non-linear, such as the data flow analysis,
Figure 9 indicates that the overall algorithm nearly has a
linear time behavior.

6.3 Run Time
The SPECjvm98 benchmark suite [15] is commonly used

to assess the performance of Java runtime environments. It
consists of seven benchmarks derived from real-world appli-
cations that cover a broad range of scenarios where Java
applications are deployed.

It measures the overall performance of a JVM including
class loading, garbage collection and loading input data from
files. The programs are executed several times until no sig-
nificant change in the execution time occurs. The slowest
and the fastest runs are reported.

The slowest runs indicate the startup speed of the JVM
including the time needed for compilation; the fastest runs
measure the peak performance and therefore the quality of
the generated code. Table 4 shows the detailed results of
SPECjvm981 for our four configurations. Table 5 illustrates
the speedup when the client compiler is compared with the
other three configurations.

Linear scan outperforms the client compiler of the JDK
5.0 by 25%, i.e. the peak performance, measured as the mean
of the fastest run, is 25% higher. The gap to the server
compiler is reduced significantly; the server compiler is only
6% faster than linear scan, while it is 32% faster than the
client compiler.

The increase of peak performance comes at no cost of
startup time. Even the slowest run of linear scan, which
includes all compilations, is 22% faster than the slowest run
of the client compiler. The slowest run of the server compiler
is not competitive: Because of the low compilation speed,
the server compiler is 15% slower than the client compiler
and even 40% slower than linear scan.

Because of the complicated structure of the Intel FPU, the
two floating point benchmarks 227 mtrt and 222 mpeg-
audio do not benefit much from linear scan register alloca-
tion as long as the FPU is used. The explicit rounding that
requires a memory access after most computations does not
allow an effective register allocation. However, when the
SSE2 extensions are enabled, the speedup is above average.

1The results are not approved SPECjvm98 metrics, but ad-
here to the run rules for research use. The input size 100
was used for all measurements.

139

JDK 5.0 Client Linear Scan FPU Linear Scan SSE2 JDK 5.0 Server

slowest fastest

1.80_227_mtrt

_202_jess

_201_compress

_209_db

_222_mpegaudio

_228_jack

_213_javac

slowest fastest slowest fastest slowest fastest

1.53

2.13 1.89

7.16 7.11

11.89 11.84

5.50 5.23

3.42 3.09

5.89 4.73

1.67 1.41

1.88 1.61

6.02 5.95

11.84 11.69

5.23 4.97

3.23 2.91

5.34 4.23

1.34 1.09

1.86 1.61

6.03 6.00

11.78 11.63

3.02 2.78

3.20 2.88

5.25 4.09

1.92 1.06

2.50 1.56

5.69 5.55

11.64 11.17

3.45 2.30

8.52 2.83

10.59 4.06

Table 4: Benchmark results for SPECjvm98 (runtime in sec.)

Geometric Mean

Linear Scan FPU Linear Scan SSE2 JDK 5.0 Server

_227_mtrt

_202_jess

_201_compress

_209_db

_222_mpegaudio

_228_jack

_213_javac

slowest fastest slowest fastest slowest fastest

1.07 1.09

1.13 1.18

1.19 1.19

1.00 1.01

1.05 1.05

1.06 1.06

1.10 1.12

1.09 1.10

1.34 1.40

1.14 1.17

1.19 1.18

1.01 1.02

1.82 1.88

1.07 1.08

1.12 1.16

1.22 1.25

0.93 1.44

0.85 1.21

1.26 1.28

1.02 1.06

1.59 2.28

0.40 1.09

0.56 1.17

0.87 1.32

Table 5: Speedup of SPECjvm98 relative to JDK 5.0 Client

The use of the SSE2 extensions contributes to the aver-
age speedup of 25%. When only the integer benchmarks
202 jess, 201 compress, 228 jack and 213 javac are con-
sidered, the speedup is 15% both in FPU and in SSE2 mode.
The server compiler is only 3% faster than linear scan for
these benchmarks.

209 db shows the lowest speedup. It performs database
functions on a memory-resident address database and spends
most time in the sorting algorithm that offers no possibil-
ity for optimizations by register allocation. All values are
loaded from arrays inside the innermost loop. Even the more
elaborate optimizations of the server compiler cannot reduce
the execution time significantly.

The most frequently executed loops of 201 compress and
222 mpegaudio access data stored in arrays. Linear scan
succeeds to assign registers to the local variables used in the
loops; no unnecessary spill moves are inserted. Only the ar-
ray loads are still present in the loops, so the optimizations
of the server compiler like range check elimination are re-
sponsible for the better performance of the code generated
by the server compiler.

7. RELATED WORK
The linear scan algorithm was described first by M. Po-

letto et al. [12][13]. Their version is very fast because the
complete allocation is done in one linear pass over the life-
time intervals. However, it cannot deal with lifetime holes
and does not split intervals, so an interval has either a regis-
ter assigned for the whole lifetime, or it is spilled completely.
This has a negative effect on architectures with few regis-
ters such as the Intel IA-32 architecture because it increases
the register pressure. In particular, it is not possible to im-
plement the algorithm without reserving a scratch register:
When a spilled interval is used by an instruction requiring

the operand in a register, the interval must be temporarily
reloaded to the scratch register. Additionally, register con-
straints for method calls and instructions requiring fixed reg-
isters must be handled separately. Our algorithm does not
require a scratch register because all constraints of the target
architecture, including the calling conventions for method
calls, are contained in fixed intervals and use positions.

When an interval must be spilled, their algorithm spills
the interval that ends last. This heuristic is good when each
interval consists of exactly one definition and one use, but
it penalizes long intervals that are frequently used, such as
the this-pointer of a method. We estimate the priority of an
interval with its distance to the next use position and spill
the interval that is not used for the longest time.

The second chance binpacking algorithm by O. Traub et
al. [17] introduced lifetime holes and interval splitting to
the linear scan algorithm. Our algorithm is influenced by
Traub’s ideas, but has considerable differences:

• While Traub rewrites the code during allocation, we
separate the allocation from the rewriting of the LIR.
This allows a more flexible splitting of intervals be-
cause we can move the split positions of intervals to
an earlier position in the code, e.g. out of a loop.

• Our main allocation loop is independent from the in-
termediate representation. All information required
during allocation is contained in the lifetime intervals
and use positions.

• The use positions distinguish between uses that must
have a register and use positions that should have a
register assigned. So it is possible to use the addressing
modes of the IA-32 architecture that allow one memory
operand for arithmetic instructions.

140

• Traub uses an additional data flow analysis when stores
are inserted during resolution to guarantee the consis-
tency of registers and their spill slots. Our spill store
elimination avoids the expensive data flow analysis,
but nevertheless covers 95% of all intervals.

An early version of our linear scan register allocator was
described in [9]. Compared with this old version, substantial
parts have changed:

• The old version operated on the high-level intermedi-
ate representation (HIR) using SSA form [3]. In the
new implementation, the HIR is converted to the LIR
before register allocation.

• Because the HIR did not expose all registers neces-
sary for an instruction, one register was reserved as a
scratch register.

• The expensive coalescing of intervals was replaced by
the lightweight register hints to save compilation time.

• The old version did not split intervals. Splitting of
intervals was introduced because it reduces spilling and
simplifies the handling of register constraints.

8. CONCLUSIONS
We presented the details of a register allocator using the

linear scan algorithm for the Java HotSpotTM client com-
piler of Sun Microsystems. The algorithm for selecting which
register is assigned to an interval is based on elaborate heu-
ristics: With the help of use positions, it is possible to spill
as few intervals as possible. When spilling is inevitable, we
select the interval that is not used for the longest time be-
cause a premature reloading could require another interval
to be spilled.

Global register allocation reduces the constraints for other
global optimizations in the compiler. While the old register
allocator restricted the lifetime of temporaries to a single
basic block, they are now handled in the same way as local
variables. More sophisticated optimizations such as escape
analysis [7] can be implemented now. The linear scan al-
gorithm has meanwhile reached a very stable state: Our
compiler passes all internal test cases of Sun Microsystems.
There are plans to integrate it into a future version of the
JDK.

9. ACKNOWLEDGMENTS
We would like to thank the Java HotSpotTM compiler

team at Sun Microsystems, especially Thomas Rodriguez,
Kenneth Russell and David Cox, for their persistent sup-
port, for contributing many ideas and for helpful comments
on all parts of the Java HotSpotTM Virtual Machine.

10. REFERENCES
[1] P. Briggs, K. D. Cooper, and L. Torczon.

Improvements to graph coloring register allocation.
ACM Transactions on Programming Languages and
Systems, 16(3):428–455, 1994.

[2] G. J. Chaitin, M. A. Auslander, A. K. Chandra,
J. Cocke, M. E. Hopkins, and P. W. Markstein.
Register allocation via coloring. Computer Languages,
6:47–57, 1981.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, 1991.

[4] R. Griesemer and S. Mitrovic. A compiler for the Java
HotSpotTM virtual machine. In L. Böszörményi,
J. Gutknecht, and G. Pomberger, editors, The School
of Niklaus Wirth: The Art of Simplicity, pages
133–152. dpunkt.verlag, 2000.

[5] Institute of Electrical and Electronics Engineers.
IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Standard 754-1985.

[6] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual, Volume 1: Basic Architecture,
2004. Order Number 253665.

[7] T. Kotzmann and H. Mössenböck. Escape analysis in
the context of dynamic compilation and
deoptimization. In Proceedings of the First Conference
on Virtual Execution Environments, 2005.

[8] H. Mössenböck. Adding static single assignment form
and a graph coloring register allocator to the Java
HotSpotTM client compiler. Technical Report 15,
Institute for Practical Computer Science, Johannes
Kepler University Linz, 2000.

[9] H. Mössenböck and M. Pfeiffer. Linear scan register
allocation in the context of SSA form and register
constraints. In Proceedings of the 11th International
Conference on Compiler Construction, pages 229–246,
2002.

[10] M. Paleczny, C. Vick, and C. Click. The Java
HotSpotTM server compiler. In Proceedings of the Java
Virtual Machine Research and Technology Symposium,
2001.

[11] J. Park and S.-M. Moon. Optimistic register
coalescing. ACM Transactions on Programming
Languages and Systems, 26(4):735–765, 2004.

[12] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A
system for fast, flexible, and high-level dynamic code
generation. In Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and
implementation, pages 109–121. ACM Press, 1997.

[13] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21(5):895–913, 1999.

[14] R. Pozo and B. Miller. SciMark 2.0.
http://math.nist.gov/scimark2/.

[15] Standard Performance Evaluation Corporation.
SPECjvm98. http://www.spec.org/jvm98/.

[16] Sun Microsystems, Inc. The Java HotSpotTM Virtual
Machine, v1.4.1, 2002.
http://java.sun.com/products/hotspot.

[17] O. Traub, G. Holloway, and M. D. Smith. Quality and
speed in linear-scan register allocation. In Proceedings
of the ACM SIGPLAN 1998 conference on
Programming language design and implementation,
pages 142–151. ACM Press, 1998.

[18] C. Wimmer. Linear scan register allocation for the
Java HotSpotTM client compiler. Master’s thesis,
Johannes Kepler University Linz, 2004.

141

