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Abstract
Since their inception, the usage pattern of web browsers has
changed substantially. Rather than sequentially navigating static
web sites, modern web browsers often manage a large number of
simultaneous tabs displaying dynamic web content, each of which
might be running a substantial amount of client-side JavaScript
code. This environment introduced a new degree of parallelism
that was not fully embraced by the underlying JavaScript virtual
machine architecture. We propose a novel abstraction for multiple
disjoint JavaScript heaps, which we call compartments. We use the
notion of document origin to cluster objects into separate compart-
ments. Objects within a compartment can reference each other di-
rectly. Objects across compartments can only reference each other
through wrappers. Our approach reduces garbage collection pause
times by permitting collection of sub-heaps (compartments), and
we can use cross-compartment wrappers to enforce cross origin
object access policy.

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures - Domain-specific architectures;
D.3.4 [Programming Languages ]: Processors - Memory manage-
ment (Garbage Collection)

General Terms Design, Performance, Experimentation

Keywords Web-Browser Architecture, Isolation, Memory Man-
agement, Garbage Collection

1. Introduction
Increasing bandwidth, faster computers, and a JavaScript perfor-
mance boost over the last few years have enabled web developers to
build highly complex web-applications. Browser-based office ap-
plications or games can now replace typical desktop applications.
This rapid change in the usage pattern of a browser poses a big
challenge for browser implementors. The functionality of a modern
browser is moving towards the responsibilities usually provided by
an operating system.

Memory management and garbage collection (GC) are now a
severe bottleneck within the browser and the JavaScript virtual ma-
chine (VM) executing client-side web programs. While previously
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browsing speed was mostly degraded by rendering and network la-
tency, GC pause times have now become an important factor of
browser performance.

Architectural changes such as multiple browser tabs have
changed the way users browse the web. The underlying JavaScript
execution model has not kept up with this evolution. The imple-
mentation of the memory management subsystem of JavaScript
VMs do not reflect the high-level configuration of the browser.
For example, high level separations such as browser tabs are not
reflected in the low-level design of JavaScript VMs. As a result,
web pages loaded in separate tabs encounter interference with each
other in ways that affect their memory management, security and
performance.

Some web browsers such as Google Chrome or Microsoft In-
ternet Explorer 8 address this separation problem by creating a
new process for each new tab or origin. This is good for secu-
rity since process boundaries act like “hardware fences” between
browsing instances and memory management can be handled com-
pletely separately for every tab. Chrome also spawns separate in-
stances of the JavaScript VM for every process. Since the created
browsing instances are heavyweight, Chrome limits the number of
processes to 20.

There are at least two problems with this approach: Certain
web features such as iframe navigation require pages to maintain
references to objects belonging to other pages. In order to support
this pattern, Chrome loads such pages into the same rendering
process, losing any benefits of process separation along the way.
Furthermore, creating a new process for every origin is not an
option for environments with limited resources such as mobile
devices. One of the design constraints of our new system is that the
new approach has to work on the desktop as well as on the mobile
version of a browser.

In order to define the problem we look at the previous imple-
mentation of the JavaScript heap in Firefox. Figure 1 depicts the
JavaScript heap with some tabs open in the browser. In this exam-
ple we open some tabs and load popular web pages. The objects
are not separated on the heap and it is likely that all the objects
from different origins interleave within the heap. A Facebook ob-
ject might reside next to a CNN object for example. We also load
the V8 benchmark page in order to run the JavaScript benchmarks.
Interleaving objects created by benchmark pages with other objects
illustrates the drawbacks of the previous implementation:

• Bad locality: Objects that are often accessed at the same time
are not grouped together.

• No partial GC possible: During a GC event, every single object
must be accessed.

Our research proposes a new layer of abstraction for the
JavaScript heap. We split the JavaScript heap into sub-heaps, which

119



JavaScript Heap

GMail

Facebook

CNN

Chrome

V8 Benchmark

Chrome

V8 Benchmark

GMail

V8 Benchmark

CNN

V8 Benchmark

Figure 1. The previous implementation allows objects of different
origins to be allocated in the same memory region.

we call compartments. JavaScript objects that are allocated from a
certain origin are now placed into the compartment that is associ-
ated with the origin. This new abstraction level allows us to:

• Separate memory,
• Improve cache behavior, and
• Perform partial GC and therefore reduce GC pause time.

We implement our research in the open source web browser
Firefox [16]. Firefox has about 400 million daily users with market
share between 25% and 30% according to [24].

Having many open tabs is not unusual any more. User reports
that are collected at Mozilla show that some users have 200+ open
tabs. Running benchmarks in such an environment have shown
drastic performance impacts. For example, the V8 benchmark score
drops from 4511 to 3017 when 50 tabs are open in Firefox because
the GC pause time increases dramatically. We reduce the GC pause
time by 80% for such an environment. With our new approach, even
users with 200+ open tabs now get the same performance as users
with just one single open tab.

Our research has major improvements for performance and se-
curity. We explain some security aspects of our approach but the
main focus of this paper is performance.

2. Compartments
In this section we introduce compartments representing sub-heaps
in our JavaScript VM. The concept of separating data using heuris-
tics has a long history in computer science. Applying this concept
to a VM architecture for JavaScript that is embedded in a browser
still raises some challenging research questions.

The JavaScript programming language is widely used for web
programming. It allows web developers to extend web sites with
client-side executable code. JavaScript copies many names and
naming conventions from Java, but the two languages are other-
wise not closely related and have different semantics. A lot of re-
search was done in the area of memory management for Java but
the results are often not applicable to JavaScript. First, there are
fundamental differences between the two languages such as dy-
namic typing and the dynamic behavior of JavaScript programs.
Second, JavaScript programs written in web pages tend to have a
short execution time in comparison to Java applications. As with
many dynamic languages, JavaScript objects are essentially asso-
ciative arrays that lack static typing; object properties can be added
and removed at runtime. JavaScript also provides a prototype-based
inheritance mechanism to create complex object hierarchies.

For Firefox 4 we changed the way JavaScript objects are
managed. Our JavaScript engine SpiderMonkey (sometimes also
called TraceMonkey [3] and JägerMonkey, which are Spider-
Monkey’s trace-compilation and baseline just-in-time compilers)
now supports multiple JavaScript heaps, which we also call com-
partments. All objects that belong to a certain origin (such as
http://mail.google.com/ or http://www.bank.com/) are placed into
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Figure 2. The new approach separates objects depending on their
origin. New origins allocate a new compartment and only objects
with the associated origin are placed in an arena.

JSRuntime    *runtime
JSPrincipal    *principal
ArenaList        arenaList[#Types]
FreeList          freeList[#Types]
WrapperMap  CompartmentWrappers

JSCompartment

bool wrapObject(JSObject)

ComartmentVector    compartments
JSCompartment        atomsCompartment

JSRuntime *1

Figure 3. The runtime holds all compartments. The compartments
themselves hold their corresponding principal, a list of arenas
where all objects and strings are allocated, all wrappers and pro-
vide functions to wrap objects and strings

a separate compartment as shown in Figure 2. The same-origin
policy [22] is the central security policy in today’s browsers. The
policy specifies that two documents from different origins cannot
access each other’s HTML documents using the DOM.

Our new compartment abstraction has a couple of implications:

1. All objects created by a page from the same origin reside within
the same compartment and hence are located in the same mem-
ory region. This improves cache utilization by reducing false
sharing of cache lines. False sharing occurs when we are try-
ing to operate on an object and we have to read an entire cache
line of data into the CPU cache. In the old model JavaScript ob-
jects could be co-located with arbitrary other JavaScript objects
from other origins. Such cross origin objects are used together
infrequently, which reduces the number of cache hits we get. In
the new model most objects referenced by a website are tightly
packed next to each other in memory, with no cross origin ob-
jects in between.

2. JavaScript objects (including JavaScript functions, which are
objects as well) are only allowed to reference objects in the
same compartment which means only same origin objects can
reach each other. This invariant is useful for security purposes.
The JavaScript engine enforces this requirement at a low level.
It means that a google.com object can never accidentally leak
into an untrusted website such as evil.com. Only a special object
type can cross compartment boundaries. We call these objects
wrappers. We track the creation of these cross compartment
wrappers, and thus the JavaScript engine knows at all times
what objects from a compartment are kept alive by outside
references (through cross compartment wrappers). This allows
us to garbage collect individual compartments, in addition to
a global collection. We simply assume all objects referenced
from outside the compartment to be live, and then walk the
object graph inside the compartment. Objects that are found to
be disconnected from the graph are discarded. With this new
per-compartment GC we shortcut having to walk unrelated heap
areas of a window (or tab) that triggered a GC.
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Figure 4. The basic data structures consists of 1MB chunks di-
vided into 4KB arenas. Every arena has a header that stores basic
information about the arena. The arena header also holds a refer-
ence to the corresponding compartment.

In Firefox this problem is even more pronounced than in other
browsers, because our UI code (also called chrome code, not to
be confused with Google Chrome) is implemented in JavaScript,
and there are many chrome (UI) objects alive at any given moment.
These UI objects tend to stick around and every time a web con-
tent window causes a GC, Firefox spends much time figuring out
whether chrome objects are still alive instead of focusing on the
active web content window.

Our design is based on an allocation model introduced by Han-
son [5]. A simplified example of our memory layout is shown in
Figure 4. We allocate 1MB chunks from the operating system and
split them up into 4KB arenas.

Every arena has a header with basic information about the arena.
With simple bit arithmetic (zeroing the last bits of each object
address) we can obtain the address of the corresponding arena
header. The arena header itself has a reference to the compartment
it belongs to. This arrangement makes it easy and fast to lookup the
corresponding compartment for each object.

Each arena holds a certain type such as strings or objects. This
implies that all objects within an arena have the same size because
all objects are allocated with an initial number of slots. If the
objects grows beyond the initial size, additional memory has to be
allocated for the object. Strings also have the same size and the
actual payload is stored in dynamic memory. A free-list keeps track
of all free objects within the arena and the reference to the first free
object is stored in the arena header.

The compartment holds a reference to the first arena header for
a certain size class and this arena header holds the reference to
the next arena with the same size class for the same compartment.
These links form a list of arenas which all belong to the same
compartment and hold the same types. For fast allocation we have
an array per compartment representing all size classes referencing
the next available allocation slot in an arena or null if there are no
slots available and a new arena must be allocated.

The compartments themselves live in our runtime. Compart-
ments are created for new origins and are destroyed whenever all
objects contained within become unreachable. The wrapperMap
of the compartment holds all wrapper objects that intercept cross-
compartment communications. The general Wrapper concept is ex-
plained in Section 3.

2.1 Allocation
Allocating an arena from a chunk now means that no other com-
partment can allocate objects in the same arena. In the previous

o1→ o2⇒

 c(o1) == c(o2)
c(o2) == AtomsCompartment

(o1, o2) ∈WrapperMap


Figure 5. An object can no longer point to an arbitrary object in
the JS heap.

model, threads allocated multiple arenas from the arena list and
kept them in the local thread storage. The allocation path had to be
locked because other threads were also allocating arenas from the
same list. After a GC, all arenas with available slots were placed
on a global list and threads had to use a lock again for allocation.
With the new model we can dispense with almost all the locking be-
cause arenas stay within the same compartment. After a GC we can
simply traverse all arenas that already belong to a certain compart-
ment without locking in order to allocate new objects. Once arenas
are allocated they stay within the same compartment until they are
empty and released.

Another popular optimization technique for JavaScript VMs is
to create strings that are unique and immutable. We call them atoms
but the technique is also called “interning” in Java VMs. The strings
are shared between the different scripts and no other string can
have the same content as the actual atomized string. The main
advantage comes from string comparison where the actual content
comparison can be avoided. This “sharing of strings” might become
a problem since we want to have as little cross-origin references
as possible. Our solution for this issue is a separate compartment
for all the immutable strings. Atomized strings also do not depend
on any other strings. This implies that there are no references
from the atoms compartment to other compartments. Allocating
atomized strings is the only place where we need fine grained
locking because different threads can allocate atoms at the same
time. The function that creates atomized strings locks the allocation
path and ensures that only one thread is currently allocating from
the atoms compartment at a time.

3. Wrappers
As mentioned before, we want to minimize the cross-compartment
references. But if they become necessary, we do not allow direct
communication between these two objects from separate compart-
ments. We delegate the communication technique to a wrapper ob-
ject that is explained in this section. In JavaScript we distinguish
between strings and objects. Strings and objects are both heap allo-
cated but strings cannot have cyclic dependencies.

References between objects must now follow several rules. As
shown in Figure 5, an object o1 can only reference o2 if:

1. o1 and o2 reside in the same compartment and therefore have
the same origin.

2. o2 is allocated from the atoms compartment meaning o2 is an
immutable string.

3. o1 and o2 are in a different compartment and the VM explicitly
allows this communication by adding a wrapper object repre-
senting o2 to the wrapper map in the compartment of o1.

Figure 6 shows all possible cross compartment communication
mechanisms. The red dashed line represents the connection be-
tween two objects when they are in separate compartments. In the
new model, each cross compartment reference is intercepted by a
wrapper object that is stored in the wrapper map in each compart-
ment. References to an atom and therefore into the atom’s compart-
ment do not need a wrapper object.

Wrappers are not a new concept in Firefox, or browsers in
general. In the past they were used to regulate how windows (or
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Figure 6. An overview of possible references between compart-
ments.The red arrows represent the old way of communicating be-
tween two objects. In the new approach, we add a wrapper objects
between 2 objects that reside in different compartments.

tabs) pass objects to each other. Cross-compartment Wrappers are
much more than just a remembered set which is common in gen-
erational GC environments. Each wrapper is a real Proxy-Object
with access-methods that are needed for security restrictions. No
direct-communication between compartments is allowed. All com-
munication between compartments must go through these wrapper
objects.

When a window or iframe attempts to reference an object that
belongs to a different window, we hand it a wrapper object instead.
That wrapper object dynamically checks at access time whether the
accessor window (also called the subject) is permitted to access the
target object. For example, if one Google Mail window tries to ac-
cess another Google Mail window, the access is permitted, because
these two windows (or iframes) are same origin and hence it’s safe
to permit this access. If an untrusted website obtains a reference to
a Google Mail DOM element, we hand it the same wrapper, and if
it ever tries to access the Google Mail DOM Element the wrapper
will, at access time, deny the property access because the untrusted
website is cross origin with google.com.

A disadvantage of the Firefox 3.6 wrapper approach (which is
similar to the way other browsers utilize wrappers) was the fact that
these wrappers had to be injected manually at the right places in the
C++ code of the browser implementation, and each wrapper had to
do a dynamic security check at access time. With compartments we
can do much better:

1. Since all objects belonging to the same origin are within the
same compartment, and no object from a different origin is in
that compartment, we can let all objects within a compartment
reference other objects in the same compartment without a
wrapper in between. Keep in mind that this does not just apply
to windows but also to iframes. A single Google Mail session
often uses dozens of iframes that all heavily exchange objects
with each other. In the past we had to inject wrappers in between
that continually performed security checks. This mediation is
no longer necessary, and there is an observable speedup when
using iframe heavy web applications such as Google Mail.

2. Since all cross origin objects are located in different compart-
ments, any cross origin access that needs to perform a security
check can only happen through a cross compartment wrapper.
Such a cross compartment wrapper always lives in the source
compartment, and accesses a single destination object. When
we create a cross compartment wrapper, we consult with the
wrapper factory to see what kind of security policy should
be applied. For example, if evil.com obtains a reference to a
google.com object, we create a wrapper referencing that object
in the evil.com compartment. When the wrapper is created, the
wrapper factory applies a stringent cross origin security policy,

which makes it impossible for evil.com to glean information
from the google.com window. In contrast to our old wrappers,
this security policy is static. Since only evil.com objects ever
see this wrapper, and it only points to one single DOM element
in the destination compartment, the policy does not have to be
re-checked at access time. Instead, every time evil.com attempts
to read information from the DOM element, the access is denied
without even comparing the two origins.

3.1 Brain Transplants
A particularly interesting oddity of the JavaScript DOM represen-
tation is the existence of two objects for each DOM window (or tab
or iframe), the inner window and the outer window. This split was
implemented by web browsers a few years ago to securely handle
windows navigated to a new URL. When such a navigation occurs,
the inner window object inside the outer window is replaced with
a new object, whereas the actual reference to window (which is
the outer window) remains unchanged. If such a navigation takes
the window to a new origin, we allocate the inner window in the
appropriate new compartment. Of course, this action now creates
a problem: The outer window might not point directly at the new
window, because it is in a different compartment.

We solve this problem using brain transplants. Whenever an
outer window navigates, we copy it into the new destination com-
partment. The object in the old compartment is transformed into a
cross compartment wrapper that points to the newly created object
in the destination compartment.

4. Partial GC
Having all JavaScript objects in the browser congregate in a single
heap is suboptimal for a number of reasons. If a user has multiple
windows (or tabs) open, and one of these windows (or tabs) created
a large number of objects, it is likely that many of these objects are
no longer reachable (garbage). When the browser detects such a
state, it initiates a GC. Unfortunately, since objects from different
windows (or tabs) are intermixed on the heap, the browser must
walk the entire heap. If a number of idle windows are open, this
can be quite wasteful, since those windows have not really created
any garbage, so whenever a window with heavy activity triggers a
GC, much of the GC time is spent walking unrelated parts of the
global object graph.

The new approach allows us to perform partial-GC on sin-
gle compartments. A single compartment GC or per-compartment
GC is triggered whenever the allocation of a single compartment
reaches some watermark that is set after a GC depending on the
working set size. As a simple example, assume that a single com-
partment GC is triggered when 10MB of JavaScript objects are al-
located. If we reach this level, we also check the overall alloca-
tion of all compartments. If the overall allocation exceeds 150%
of the triggering compartment allocation (or 15MB in this exam-
ple) we perform a global GC. There exist other GC triggers in the
browser but they are not relevant to the per-compartment GC ap-
proach and beyond the scope of this paper. We also can not ignore
of the global GC because the new approach introduces the possi-
bility of cyclic data structures between compartments. Two objects
in separate compartments that point to each other would never be
collected with only per-compartment GCs since the wrapperMaps
would keep them alive.

4.1 Marking
In order to find all reachable objects for a global GC we traverse the
object graphs beginning with the following roots: First, we perform
a conservative stack scan and mark all objects that are reachable
from the native C stack. Then we mark all explicit roots that are
stored in a roots hash table followed by marking all global objects.
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Alias URL
280s 280slides.com

AMAZ amazon.com
BING bing.com
DIGG digg.com
EBAY ebay.com
FBOK facebook.com
FLKR flickr.com
GDOC docs.google.com
GMAP maps.google.com
GMIL gmail.com
GOGL google.com
HULU hulu.com
ISHK imageshack.us
TECH techcrunch.com
V8BE V8.googlecode.com/svn/data/benchmarks/v6
YTUB youtube.com

Table 1. Selected JavaScript-enabled web sites. All sites were vis-
ited on January 30th 2011. Some sites required an account in order
to perform basic tasks.

Marking reachable objects for a single-compartment GC fol-
lows the same scheme as the marking for the global GC with one
additional step. As mentioned before we assume all objects in other
compartments to be alive. Since there are no direct pointers be-
tween compartments, marking all wrapper references from other
compartments is sufficient to capture all reachable objects. The
marking function checks every reference if the corresponding ob-
ject is in the compartment currently performing the GC. Obtaining
the compartment identity is done using simple pointer arithmetic
and is very cheap as described in Figure 4.

4.2 Sweeping
JavaScript does not support a finalize() method as Java does. How-
ever the internal VM design calls a finalize function on every un-
reachable object during a GC where dynamically allocated memory
for an object gets freed. The VM-API also allows overwriting this
finalizer function. This is done by the browser and many embedders
that use a standalone version of the JavaScript VM.

The sweeping phase for a global GC consists of traversing
each arena and checking for unreachable (unmarked) objects. The
advantage for a single compartment GC is that we do not have to
traverse all arenas. It is sufficient to traverse only arenas that are
allocated from the compartment involved in the single compartment
GC since all other objects are considered alive as mentioned before.
The sweeping process touches each object and checks the mark bit.
If the mark bit is not set, a finalizer is called for the object and the
location is added to the free list of the arena.

5. Granularity
Finding the right granularity for compartmentalizing web-content
is the key for success. On the one hand we have the old approach
with a single JavaScript heap and all objects regardless of their
origin are intermixed in the heap. The other side of the spectrum
is not that easy to define. “Web programs are easy to understand
intuitively but difficult to define precisely” [20].

A web application such as GMail consists of many sub-structures.
Typical components are parent-pages containing images, script-
libraries, embedded frames, popup pages for chatting and mes-
sages. Placing each of these items into separate compartments
would result in many compartments just for a single page like
GMail. In order to argue that one compartment per origin is the

Alias Origin Wrappers IFrame Wrappers
280s 1 26 2 85

AMAZ 4 280 16 563
BING 1 80 3 105
DIGG 3 114 3 115
EBAY 1 48 1 50
FBOK 1 249 6 445
FLKR 3 185 23 1094
GDOC 6 552 7 277
GMAP 1 88 2 82
GMIL 2 183 9 5654
GOGL 1 60 2 209
HULU 1 103 10 245
ISHK 6 776 41 1396
TECH 11 2324 154 3094
V8BE 1 35 1 35
YTUB 2 183 7 204

Table 2. Compartments and corresponding cross compartment
pointers when creating new compartments per origin or per iframe.

right choice, we can compare it with an implementation where
we separate objects based on iframes. The HTML <iframe> tag
defines an inline frame that contains another document and is sup-
ported by all major browser vendors. The src attribute provides
the location of the frame content which is typically an HTML doc-
ument. There is no general way of telling how many iframes a web
page has, but in order to compare our approach with a solution
where each iframe gets its own compartment we compare typical
web pages listed in Table 1. We compare our approach with an
implementation that creates a new compartment for each iframe
in Table 2. We can see that the finer granularity would be bene-
ficial for some pages like Ebay and Digg, but for other pages the
number of compartments increases dramatically. Techcrunch, for
example, would have 154 compartments instead of 11. For GMail,
the number of wrappers would increase from 183 to 5654.

6. Processes
Another question is how compartments compare to per-tab pro-
cesses as they are used by Google Chrome and Internet Explorer.

Both processes and compartments shield JavaScript objects
against each other. The most important distinction here is that
processes offer a stronger separation enforced by the processor
hardware, while compartments offer a pure software guarantee.
However, compartments benefit by allowing much more efficient
cross compartment communication that processes code.

With compartments, cross origin websites can still communi-
cate with each other with a small overhead (governed by certain
cross origin access policies), while with processes cross-process
JavaScript object access is either impossible or extremely expen-
sive. In the future, browsers will likely see both forms of separation
being applied. Two web sites that never have to talk to each other
can live in separate processes, while cross origin websites that do
want to communicate can use compartments to enhance security
and performance.

The space overhead can be shown by simply opening an empty
tab and measuring the increased memory consumption. Opening
another tab in Chrome creates a new process with about 30MB.
Open another tab in Firefox is about 2.2MB and Safari about
10MB.

Another drawback that is introduced by the process level sepa-
ration comes from the object communication mechanism. Two ob-
jects that want to communicate with each other have to go through
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an expensive inter process communication mechanism. A message
sent from an object A to another object B does not have any guar-
antee to be received from B if there is no synchronization in place.
The run-to-completion semantics defines that a state-machine has
to complete processing one event before it can start processing the
next.

Google Chrome supports 4 different process models: 1) mono-
lithic process, 2) process per browsing instance, 3) process per site
instance and 4) process per site. Models 1 and 2 do not provide
memory protection across multiple origins. Model 3, (which is en-
abled by default) and model 4 still do not prevent origins that are
embedded with the iframe tag from accessing objects from the par-
ent page because they all execute in one process.

7. Evaluation
To evaluate our compartmental memory management approach,
we implemented it in the open source JavaScript VM SpiderMon-
key [18], which is used by Mozilla Firefox. As a result of this
choice we are able to provide benchmark numbers for in-browser
synthetic benchmarks as well as actual JavaScript web applications.

All experiments were performed on a Mac Pro with 2 x 2.66
GHz Dual-Core Intel Xeon processor and 4 GB RAM running Ma-
cOS 10.6 and beta version 10 of Firefox 4.0 that uses the com-
partments mechanisms we have introduced in this paper as its de-
fault configuration. It is easy to rerun the benchmarks by setting
the javascript.options.mem.gc per compartment option in
the about:config page of Firefox. This section uses baseline im-
plementation, called base, where we only perform global GCs and
per-compartment implementation or comp, where we also perform
per-compartment GCs.

7.1 Cost in Space
The first question to answer is whether the new approach improves
the memory footprint of the VM or introduces some space over-
head. There are two scenarios that influence the space-overhead in
a positive and negative way. Since we do not intermix objects of
different origins within arenas any more, we must always allocate
a new arena if all arenas are full for a certain compartment. This re-
sults in higher fragmentation because we end up allocating arenas
even if there are some empty slots in arenas that belong to another
compartments. On the other hand, if there are reachable objects
within an arena, we cannot return the arena to the OS.

With the new approach it is more likely that objects with the
same lifetime end up in the same compartment. Whenever we
close a tab, the corresponding compartments including all its are-
nas are likely to become garbage. Once there are no reachable ob-
jects within the arenas, we can return them to the OS. In the old
approach, objects from different domains might have kept arenas
alive.

Figure 7 shows the difference between the old model and the
new model. In this experiment, we open 50 tabs with popular web
pages and close one after another with a forced GC in between. The
y-axis represents the number of allocated 4KB arenas. As expected,
the new approach has a higher peak demand because allocated
arenas belong to a single origin. The difference for 50 tabs is, for
this example, around 13% or 15MB. During the closing process,
the new model shows its advantages. Since closing a tab releases
all objects from a certain origin, the corresponding arenas become
empty. The results of Figure 7 also show that our new approach
is going towards a generational GC model. We can clearly see
that objects separation based on their origin shows better results
than when they are intermixed with other objects. This aspect is an
interesting outcome that will lead to further investigation.

One of the key factors for our partial GC approach is the vol-
ume of missed space that does not get freed because we assume
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Figure 7. Opening 50 tabs and closing them again with the base-
line and per-compartment approach. We can see a higher memory
consumption peak for the opening process with the new approach
but, once we close tabs, we also deallocate arenas faster.

all objects are reachable within this space. We changed the way
our per-compartment GC works in order to get detailed informa-
tion about unreclaimed objects because of our partial GC approach.
Figure 8 and Figure 9 show detailed numbers for the GC work-
loads. We open 50 tabs in the browser with popular websites and,
once all of them are fully loaded, we start the V8 benchmark suite.
Whenever we would trigger a per-compartment GC, we perform
a full GC but do not reclaim objects that are not part of the com-
partment that triggered the GC. 50 Tabs Reachable represents all
objects that are reachable in the JavaScript VM excluding the com-
partment where the V8 benchmark runs. V8 Reachable represents
all objects that are reachable within the compartment that triggered
the per-compartment GC (V8 compartment). This number also rep-
resents the marking workload for the partial GC.

Finalized represents all objects that are finalized during the GC
event. Missed represents the number of unreachable objects that are
not reclaimed because of the per-compartment GC.

Relative values are calculated as follows:

ReachableRel. = V 8Reachable
50Tabs+V 8Reachable

∗ 100%

MissedRel. = Missed
Finalized

∗ 100%

Rel. to Total = Missed
Missed+Finalized+50Tabs+V 8Reachable

∗ 100%

The first three GCs are global GCs and happen during loading
of the 50 tabs. Once we start the V8 benchmark suite we see only
compartment GCs until we shut down the browser. The shutdown
process performs the last three global GCs.

Reachable Rel. is 0 for the first global GCs. After we start the
V8 benchmark suite it is between 0.5% and 1%. For the Earley-
Boyer benchmark we see a triangle allocation scheme and Reach-
able Rel. alternates between 1.5% and 7%. Only during the Splay
benchmark, where a huge splay tree is created and modified, does
the actual reachable objects within the V8 compartment represent
around 60% of the whole browser heap.

More interesting is the ratio between finalized and missed ob-
jects. We can see that, during the benchmark, we create around 3%
(Missed Rel.) garbage in other compartments that is not reclaimed.
At GC event 37, we see a finalization spike during the Splay bench-
mark. This indicates that we perform a GC that does not free any
memory and we have to increase the heap. The following GC events
finalize around 4.5 million objects, but this is not shown due to
readability of the graph.
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Figure 8. Reachable objects when opening 50 tabs and running
the V8 benchmarks. 50 Tabs Reachable includes all compartments
except the compartment where the V8 benchmark runs. Comp
Reachable means all reachable objects within the V8 compartment.
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Figure 9. Finalized objects when opening 50 tabs and running
the V8 Benchmarks. Missed represents the number of unreachable
objects that fail to reclaim in other compartments because we only
perform per-compartment GC.

Rel. to Total measures the ratio between total heap space and
Missed to Finalized. We can see that we only miss to reclaim about
2% of the heap space because of the per-compartment GCs. Note
that the number of GC events differs from the results in Table 3 be-
cause our instrumentation increased the GC pause time and there-
fore also influenced the benchmark scores.

7.2 V8 Benchmark
The V8 suite runs each benchmark for one second and computes
a score per benchmark and an overall score based on each individ-
ual score. Since the benchmark runs for one second, the amount of
memory that is used varies. An allocation-heavy benchmark allo-
cates more objects and therefore more memory in the same amount
of time if the allocation becomes faster and GC pause time is re-
duced. We also performed VM internal measurements in order to
discuss the GC events happening during running the V8 bench-
marks in more detail. We use the time stamp counter rdtsc [9] in
order to measure the duration of each GC event.

Table 4 shows the results for running the V8 benchmarks for
the baseline and our new approach. We can see that the reduced
workload due to the partial GC increased the number of performed
GCs from 63 to 75. The total time spent in marking increases be-
cause we perform more GCs but the average time spent in marking

1 Base 1 Comp 50 Base 50 Comp
Richards 7929 7932 8211 8084

DeltaBlue 4198 5263 2142 4985
Crypto 8634 8598 8779 8596

RayTrace 3510 3527 1698 3464
EarleyBoyer 4357 4550 1514 3807

RegExp 1711 1692 1624 1651
Splay 5012 5134 3529 5041
Score 4505 4692 3017 4511

Table 3. Results of the V8 benchmark suite (higher is better). The
numbers represent running the benchmark suite in a single tab for
the baseline and per-compartment approach (Comp) and opening
50 typical web pages and running the benchmark suite for the
baseline and per-compartment GC approach.

Base Average Comp Average Relative
GC Events 63 - 75 - +16%
Marking 2891 46 3075 41 -12%

Sweeping 2693 43 3319 44 +3.4%
Total 6117 97 6583 88 -11%

Table 4. Basic internal measurements for the V8 benchmark. The
numbers represent 1E6 cycles measured with rdtsc.

reduces around 12%. The increase in finalization time results from
the fact that more objects must be finalized. As explained in Sec-
tion 4, we also check the mark bit of every single object during
sweeping. Since we encounter fewer marked objects and more un-
reachable objects, the time spent in finalization increases. Marking
fewer objects and finalizing more objects indicates a good separa-
tion technique.

Figure 10 through Figure 13 show the mark-to-sweep ratio
for each GC event for the V8 benchmarks. Figure 10 shows the
marking and sweeping ratio for starting the browser, running the
V8 benchmarks and closing the browser again with our baseline
approach. Figure 11 shows the marking and sweeping ratio with
our new per-compartment GC model. We can see that even for a
single tab we reduce the time spent in marking because we only
perform the GC in the benchmark compartment and do not include
the browser internal chrome compartment. Table 3 shows that the
benchmark score increases from 4505 to 4692 for a single open
tab. The big spike almost near the end is caused by the allocation
intensive Splay benchmark. The finalization spike at the end is
caused by the shutdown of the browser.

The real strength of the new approach shines with many open
tabs. Figure 12 and Figure 13 show the mark-sweep ratio with 50
other open tabs. We start the browser, open 50 tabs, wait until
they are fully loaded and start the V8 benchmark in a new tab.
We can see that marking time dominates the GC pause time in
Figure 12. If we compare this time to Figure 13 we can clearly
see the improvements. We perform global GCs at the beginning
because we open many web pages and the overall memory footprint
increases. Once we start the V8 benchmark we see that the per-
compartment GC is triggered because only the benchmark origin
creates objects. There is one spike in the middle of the benchmark
where the browser decides to perform a global GC. This is either
caused by internal timers of the browser or an overall increase
of the memory footprint. We can see that the time is identical to
the baseline approach for this single spike. Table 3 shows that the
benchmark score increases from 3017 to 4511.
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Figure 10. Running the V8 Benchmark Suite with a single tab
using baseline approach. The y-axis shows a stacked representation
of cycles measured with rtdsc.
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Figure 11. Running the V8 Benchmark Suite with a single tab
using per-compartment GC.

Running the benchmark with an additional 50 open tabs now
reaches the same performance as running the benchmark in a single
tab without our new model. The average number of cycles for each
GC event reduces from 885E6 to 294E6. If we only consider the
interval where the benchmark is running and exclude the start and
shutdown overhead, we reduce the average numbers of cycles 83%,
from 998E6 to 170E6.

7.3 Kraken Benchmarks
Table 5 shows the Kraken benchmark [17] results. The benchmark
was executed in a browser with websites loaded from Table 1 ex-
cept the V8 benchmark suite. We can see an overall performance
increase from 6.9% due to shorter GC pause times. The Base col-
umn represents the baseline and the Comp column represents the
per-compartment GC approach. The new approach also introduces
more stability for the individual benchmarks. As can be seen in Ta-
ble 5, the random noise for the individual benchmarks is reduced.

7.4 SunSpider Benchmarks
We claim to improve locality of reference with our new approach.
Since we do not allocate objects in already used arenas from an-
other compartment and rather allocate a new arena, we place ob-
jects near other objects from the same origin. Running the SunSpi-
der benchmark suite is an indicator for a better locality during the
benchmark run because there is no GC event during the benchmark.
Also the locking that is removed for arena allocation increases per-
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Figure 12. Opening 50 tabs with popular web pages and running
the V8 Benchmark Suite using baseline approach. The y-axis shows
a stacked representation of cycles measured with rtdsc.
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Figure 13. Opening 50 tabs with popular web pages and running
the V8 Benchmark Suite using the new per-compartment GC.

formance. The benchmark suite executes all benchmarks 10 times
with a forced GC in between that does not impact the benchmark
scores. SunSpider is a time based benchmark suite where actual
execution time is measured. Table 6 shows the results of the Sun-
Spider benchmarks. We can see a 3% improvement with the new
allocation scheme.

7.5 Non-Benchmarks
Reducing the GC pause time also has other advantages over in-
creasing benchmark scores. An everyday Firefox user cares more
about the performance for real workloads. Our new approach
greatly improves the performance of all allocation heavy web apps
such as JavaScript based animations and games. The GC pause time
during an animation is no longer related to the number of open tabs
and users do not have to close all other tabs in order to get the best
performance for JavaScript based games.

8. Related Work
Jones and Lins [10] describe basic GC algorithms that are also used
in our implementation. The current implementation of the memory
management system in SpiderMonkey is based on the research
from Hanson [5]. Mark and sweep GC implementations have a long
history [13] and we do not claim to reinvent any of the basic ideas.
We show how a new layer of abstraction can reduce the workload
for such systems and make a real difference for every Firefox user.
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Benchmark Base [ms] +/- [%] Comp [ms] +/- [%]
astar 1236.3 5.0 1182.7 5.8

beat-detection 457.0 12.9 418.5 3.4
dft 496.8 13.2 473.5 3.6
fft 343.2 13.5 348.6 3.7

oscillator 290.8 0.7 290.8 0.7
gaussian-blur 492.5 0.2 492.0 0.2

darkroom 221.7 0.5 221.0 0.2
desaturate 487.6 5.1 477.1 0.2

parse-financial 131.3 32.7 111.8 1.3
stringify-tb 96.2 51.2 71.8 2.3

aes 231.6 23.4 234.8 9.4
ccm 154.5 2.1 161.3 8.2

pbkdf2 313.4 23.8 237.6 7.4
sha256-it 198.2 39.0 95.9 2.7
TOTAL 5151.1 1.8 4817 1.7

Table 5. Kraken benchmarks

Our approach can also be described as a simplified version of
distributed GC. The Emerald system [11, 12] supports moving
objects between physically different nodes. Our solution differs in
two ways: All the objects stay in the same process even if they
are moved from one compartment to another, and a global GC still
performs a GC on the whole heap rather than performing mark and
sweep on each individual compartment.

Optimizing allocation patterns to improve the locality of ref-
erence in the virtual memory [19] and cache [14] has been stud-
ied over many years. Basic implementation like the “first-fit” ap-
proach [13] or improvements like the “better-fit” approach [25] still
show bad reference locality characteristics. We use object separa-
tion based on their origin to obtain better reference locality. For ex-
ample, internal objects created from chrome code no longer share
pages with objects allocated from web sites.

Reis et al. [20] show the various process models supported by
Google Chrome. They compare different process isolation models
(monolithic process, process-per-browsing-instance, process-per-
site and process-per-site-instance) that are all supported by Google
Chrome. In contrast to our work, they attempt to create new pro-
cesses for new domains. A more detailed discussion about the dif-
ferences can be found in Section 6.

Microsoft [15] also uses OS processes to isolate tabs from
one another in Internet Explorer 8. This protection mechanism is
insufficient from a security standpoint since a user may browse
multiple mutually distrusting sites in a single tab via iframes.

In more recent work from Microsoft Research, Wang et al. [26]
present a secure web browser constructed as a multi-principal OS.
The browser is called Gazelle and its kernel is an operating system
that exclusively manages resource protection and sharing across
web site principals. The main drawback is the performance. The
page load time for a site like nytimes.com increases to around 6
seconds.

Hirzel et al. [7] do an interesting analysis on the connectivity
of heap objects. They show the importance of understanding the
connectivity of the heap objects and give hints on improving ex-
isting partition models. Their research is focused on Java but the
overall connectivity idea is also relevant for JavaScript. Hirzel [6]
also shows in his PhD thesis a connectivity based GC approach that
relies on object connectivity analysis. Similar to our approach they
try to place objects with the same lifetime and access frequency in
the same memory area called “partition”.

The Beltway [1] system also separates objects in “belts” with
the main focus on comparing generational GC aspects.

Benchmark Base [ms] Comp [ms] Speedup [%]
cube: 16.1 15.7 2.48

morph: 16.1 15.8 1.86
raytrace: 36.5 36.2 0.82

binary-trees: 19.9 19.1 4.02
fannkuch: 13 12.9 0.77

nbody: 4 4 0.00
nsieve: 5 5 0.00

3bit-bits-in-byte: 0.5 0.5 0.00
bits-in-byte: 6.7 6.7 0.00
bitwise-and: 1.3 1.2 7.69
nsieve-bits: 4.3 4.2 2.33
recursive: 21.3 20.9 1.88

aes: 10.5 10.3 1.90
md5: 5.3 5.2 1.89
sha1: 2.6 2.6 0.00

format-tofte: 20.1 19.4 3.48
format-xparb: 13.4 12.8 4.48

cordic: 8.3 4.6 44.58
partial-sums: 7.9 7.8 1.27

spectral-norm: 3.2 3.2 0.00
dna: 11.8 11.9 -0.85

base64: 3.3 3.1 6.06
fasta: 12.4 12.7 -2.42

tagcloud: 22.4 21.4 4.46
unpack-code: 29.6 28.9 2.36
validate-input: 5.3 4.9 7.55

TOTAL 300.7 291.1 3.19

Table 6. SunSpider benchmarks.

Seidl et al. [23] present a profile-driven object lifetime and
access frequency predictor. They reduce the number of page faults
by placing highly referenced objects next to each other on a small
set of pages. Short lived objects on the other hand, are placed on a
small set of different pages.

Cox et al. [2] use multiple VMs to completely isolate web appli-
cations. They present a solution to prevent cross origin communi-
cation with an overhead of up to 9 seconds to start a new browsing
instance.

Grier et al. [4] present the OP web browser which is based on a
browser- level information-flow tracking system. It enables them to
analyze browser-based attacks after they have happened and show
the possible root of the attack.

More recently, Inoue et al. [8] made a study of memory man-
agement for web-based applications on multicore processors. They
compare a traditional and a region-based memory allocator for PHP
applications and show speedups of up to 27%. They introduce a
freeAll function that can be called from an application once all of
the objects on the heap can be deallocated.

Richards et al. [21] present a study of currently used JavaScript
benchmarks. They compare the behavior of V8 and SunsSpider
benchmarks with popular web pages. One of the outcomes of this
research is that the overall lifetime of benchmark objects is not
comparable to actual web pages.

9. Conclusions
We demonstrated the advantages and an efficient implementation
of per-compartment GC. We add another layer of abstraction to the
JavaScript heap and separate JavaScript data based on their origin.
Partial GC on a single compartment reduces the workload for the
GC and therefor reduces the GC pause time. Our experiments show
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that the GC pause time for running the V8 benchmarks with 50
other open tabs is reduced by up to 83%.

The foundation we laid with the compartments work will also
enable a number of future extensions. Since we now cleanly sep-
arate objects belonging to different tabs, future changes to our
JavaScript engine will permit us to not only perform JavaScript GC
for individual compartments, but we will also be able to do so in
the background on a different thread for tabs with inactive content.

Our implementation is the default configuration for the current
release version 4 of Firefox. It greatly improves the internet expe-
rience of several hundred million people every day.
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