
1

Run-Time Defense against Code Injection
Attacks using Replicated Execution

Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael Franz

Abstract—The number and complexity of attacks on computer systems are increasing. This growth necessitates proper defense
mechanisms. Intrusion detection systems play an important role in detecting and disrupting attacks before they can compromise
software. Multi-variant execution is an intrusion detection mechanism that executes several slightly different versions, called variants,
of the same program in lockstep. The variants are built to have identical behavior under normal execution conditions. However, when
the variants are under attack, there are detectable differences in their execution behavior. At run time, a monitor compares the behavior
of the variants at certain synchronization points and raises an alarm when a discrepancy is detected.
We present a monitoring mechanism that does not need any kernel privileges to supervise the variants. Many sources of
inconsistencies, including asynchronous signals and scheduling of multi-threaded or multi-process applications, can cause divergence
in behavior of variants. These divergences cause false alarms. We provide solutions to remove these false alarms.
Our experiments show that the multi-variant execution technique is effective in detecting and preventing code injection attacks. The
empirical results demonstrate that dual-variant execution has on average 17% performance overhead when deployed on multi-core
processors.

Index Terms—Intrusion detection, multi-variant execution, n-variant execution, system call.

F

1 INTRODUCTION

S ECURITY vulnerabilities in software have been a
significant problem for the computer industry for

decades. While the use of safer programming languages
such as Java and C# has alleviated the problem, there
are still many software packages that are created and
maintained in C and C++. This is primarily driven
by concerns about performance and access to low-level
constructs, which is not always possible in languages
executed in a managed environment. On the other hand,
writing safe and secure programs in C and C++ is
difficult, despite an increase in education and the avail-
ability of safer APIs designed to help detect errors. As a
result, the challenge of finding mechanisms to detect and
remove vulnerabilities persists. With the large amount of
code written every year, it should be noted that despite
the fact that the vulnerability density is decreasing, the
overall number of vulnerabilities is increasing. For exam-
ple, the number of buffer errors listed by the statistics
feature of the National Vulnerabilities Database at the
time of writing increased from 409 in 2007 to 563 in 2008,
and 565 in 2009 [30].

Many techniques have been developed to eliminate
vulnerabilities, but none of them provides a complete
solution. Modern static analysis tools are capable of
finding many varieties of programming errors, but a
lack of run-time information limits their abilities. Some

• Babak Salamat is now with the Qualcomm Bay Area Research Center. All
other authors are with the Department of Computer Science, University
of California, Irvine, CA 92697.
E-mail: {bsalamat, tmjackso, wagnerg, cwimmer, franz}@uci.edu

also have a relatively high false positive rate, making
them expensive to use in practice. Dynamic and run-
time tools are often not effective because they lack a
baseline to use for detection. Also, the performance
overhead of sophisticated algorithms used by such run-
time tools is often prohibitively high in some production
systems [16], [31].

Multi-variant code execution [4], [8], [12], [37], [38] is
a run-time monitoring technique that prevents system
damage resulting from malicious code execution and
addresses the above problems with dynamic detection
tools. Multi-variant execution protects against malicious
code execution attacks by running two or more slightly
different versions of the same program, called variants, in
lockstep. At defined synchronization points, the variants’
behavior is compared against each other. Divergence
among the behavior is an indication of an anomaly and
raises an alarm.

An obvious drawback of multi-variant execution is the
extra processing overhead, since at least two variants of
the same program must be executed in lockstep to pro-
vide the benefits mentioned above. Our experimental re-
sults show that this overhead is in the range afforded by
most security sensitive applications where performance
is not the first priority, such as government and banking
software. Besides, the large amount of parallelism that
inherently exists in multi-variant execution helps it take
advantage of multi-core processors. Currently, cores are
often idle due to the lack of extractable parallelism in
many applications or due to the bottlenecks imposed
by memory or I/O devices [17]. Moreover, the number
of cores is increasing rapidly. For instance, Intel has
promised 80 cores by 2011 [18]. A multi-variant exe-

2

Diversified Application

Operating System

Multi-Variant Monitor
Untrusted

Trusted

Library

Conventional

Application

Library 1

Variant 1

Library n

Variant n...

Fig. 1. Our proposed architecture does not grow trusted
code of the operating system and allows execution of
conventional applications without engaging the MVEE.

cution environment (MVEE) can engage the idle cores
in these systems to improve security with little perfor-
mance overhead.

Unlike many previously proposed techniques to pre-
vent malicious code execution [3], [11], [21] that use
random and/or secret keys in order to prevent attacks,
multi-variant execution is a secret-less system. It is de-
signed on the assumption that program variants have
identical behavior under normal execution conditions
(“in-specification” behavior), but their behavior differs
under abnormal conditions (“out-of-specification” be-
havior). Therefore, the choice in what to vary, e.g., stack
layout or instruction set, defines which classes of attacks
can be stopped and which vulnerabilities still can be
exploited (false negatives) [19].

It is important that every variant be fed identical
copies of each input from the system simultaneously.
This design makes it difficult for an attacker to send
individual malicious inputs to different variants and
compromise them one at a time. If the variants are
chosen properly, a malicious input to one variant causes
collateral damage in some of the other variants, causing
them to deviate from each other. The deviation is then
detected by a monitoring agent that enforces a security
policy and raises an alarm.

In contrast to previous work, our MVEE is an un-
privileged user-space application that does not need
kernel privileges to monitor the variants and, therefore,
does not increase the trusted computing base (TCB) for
processes not running on top of it. Increasing the size
of the TCB is detrimental to the overall security of a
system. This has raised concerns in recent years and
many researchers investigate methods to reduce the TCB
size [20], [26], [28].

Our proposed architecture allows running conven-
tional applications without engaging the MVEE (see Fig-
ure 1). Thus, normal applications can run conventionally
on the system and in parallel with security sensitive
applications that are executed on top of the MVEE.

In particular, this paper summarizes the following
ideas that were already published in conference pa-
pers [36], [37], [38]:

• A novel technique to build a user-space multi-
variant monitor that does not need any OS kernel

modification. Our monitor supervises the execution
of parallel instances of the subject application using
the debugging facilities of a standard Linux kernel.

• A solution to the problem of preventing false pos-
itives caused by inconsistent scheduling of threads
and processes in multi-threaded and multi-process
applications.

• Solutions to support a wider range of system calls in
multi-variant execution, including the exec family.

In extension to our previous conference papers, this
paper contributes the following novel parts:

• A solution to the problem of preventing false pos-
itives caused by asynchronous signal delivery. Our
method greatly reduces the delay in delivering sig-
nals and improves accuracy of timer signals signif-
icantly.

• Analysis of the benchmark characteristics. We pro-
vide reasons why certain types of applications suffer
from higher performance degradation in a multi-
variant environment.

2 THE MULTI-VARIANT MONITOR

Multi-variant execution is a monitoring mechanism that
controls the states of the variants being executed and ver-
ifies that the variants are complying to defined rules. A
monitoring agent, or monitor, is responsible for perform-
ing the checks and ensuring that no program instance
has been corrupted. This can be achieved at varying
granularities, ranging from a coarse-grained approach
that only checks that the final output of each variant is
identical, all the way to a checkpointing mechanism that
compares each executed instruction. The granularity of
monitoring does not impact what can be detected, but it
determines how soon an attack can be caught.

We use a monitoring technique that synchronizes pro-
gram instances at the granularity of system calls. Our
rationale for using this granularity is that the semantics
of modern operating systems prevent processes from
having any outside effect unless they invoke a system
call. Thus, injected malicious code cannot damage the
system without invoking a system call. Moreover, coarse-
grained monitoring has lower overhead compared to
fine-grained monitoring, as it reduces the number of
comparisons and synchronization points.

Our monitor runs completely in user space. The mon-
itor is a process invoked by a user and receives the
paths of the executables that must be run as variants.
The monitor creates one child process per variant and
starts executing all of them. It allows the variants to run
without interruption as long as they do not require data
or resources outside of their process spaces. Whenever a
variant issues a system call, the request is intercepted by
the monitor and the variant is suspended. The monitor
then attempts to synchronize the system call with the
other variants. All variants need to make the exact same
system call with equivalent arguments within a small

3

time window. The invocation of a system call is the
synchronization point in our technique.

Note that argument equivalence does not necessarily
mean that argument values are identical. When an argu-
ment is a pointer to a buffer, the contents of the buffers
are compared and the monitor expects them to be the
same, whereas the pointers themselves can be different.
Non-pointer arguments are considered equivalent only
when they are identical.

In a more formal way, the monitor determines whether
the variants are in complying state based on the fol-
lowing rules. If p1 to pn are the variants of the same
program p, they are considered to be in conforming
states if at every synchronization point the following
conditions hold:

1) ∀si, sj ∈ S : si = sj
where S = {s1, s2, ..., sn} is the set of all invoked
system calls at the synchronization point and si is
the system call invoked by variant pi.

2) ∀aij , aik ∈ A : aij ≡ aik
where A = {a11, a12, ..., amn} is the set of all the
system call arguments encountered at the syn-
chronization point, aij is the ith argument of the
system call invoked by pj and m is the number
of arguments used by the encountered system call.
A is empty for system calls that do not take argu-
ments. When an argument is a pointer to a buffer,
the contents of the buffers are compared and the
monitor expects them to be the same, whereas
the pointers (actual arguments) themselves can be
different. Formally, the argument equivalence op-
erator is defined as:

a ≡ b⇔
{

if type 6= buffer : a = b
else : content(a) = content(b)

with type being the argument type expected for this
argument of the system call. The content of a buffer
is the set of all bytes contained in it:

content(a) := {a[0]...a[size(a)− 1]}

with the size function returning the first occurrence
of a zero byte in the buffer in case of a zero-
terminated buffer, or the value of a system call
argument used to indicate the size of the buffer
in case of buffers with explicit size specification.

3) ∀ti ∈ T : ti − ts ≤ ω
where T = {t1, t2, ..., tn} is the set of times when
the monitor intercepts system calls, ti is the time
that system call si is intercepted by the monitor,
and ts is the time that the synchronization point
is triggered. This is the time of the first system
call encountered at this synchronization point. ω
is the maximum amount of wall-clock time that
the monitor waits for a variant. ω is specified in
the policy and depends on the application and
hardware. As an example, the ratio of the number
of variants to the number of available processor
cores can increase or decrease ω. Figure 2 illustrates

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" '" #!" #'" $!" $'" %!" %'" &!" &'" '!"

!
"#
$%
&'
#%
()

&*

+,$",(-*.'/,0&*

,-./012"34526"#7)"89:," ,;<=1"34526"$7#%"89:," ,><=?"34526"$7'"89:,"

*!"<@"A"B=502@C"
?<=1AD452"?21=E"

$)"<@"A"B=502@C""
F<=?AD452"?21=E"

$*("<@"A"B=502@C""
@./012AD452"?21=E"

#')"<@"A"-2D4/?"1=502@C"
@./012AD452"?21=E"

Fig. 2. Inter-system call delays experienced by a variant
in an MVEE vary according to the hardware of the under-
lying system.

the range in the first 50 wait times experienced
by the monitor waiting for the second variant of
a four-variant MVEE on different systems.

If any of these conditions is not met, an alarm is
raised and the monitor takes an appropriate action based
on a configurable policy. We terminate and restart all
the variants, but other policies such as terminating only
the non-conforming ones, based on majority voting, are
possible.

Care should be taken when using majority voting, as
the behavior of the majority does not necessarily indicate
correct behavior. If the majority of the variants were
susceptible to a particular type of attack, the system
could incorrectly terminate the legitimate minority and
continue with the compromised variants. Therefore, the
choice of variation mechanisms and the number of the
variants play a vital role in the correctness of the system
when majority voting is used to tolerate attacks. Hence,
we decided to not use majority voting in our system.

2.1 Monitor Security
The monitor isolates the variants from the OS kernel
and monitors all communications between them and the
kernel. The monitor is implemented as an unprivileged
process that uses the process debugging facilities of the
host operating system (Linux) to intercept system calls.
This mechanism simplifies maintenance as patches to the
OS kernel need not be re-applied to an updated version
of the kernel. Moreover, errors in the monitor itself are
less severe since the monitor is a regular unprivileged
process, as opposed to a kernel patch or module running
in privileged mode. If the monitor was compromised, an
attacker would be limited to user-level privileges and
would need a privilege escalation to gain system-level
access. Note that we assume the OS is trusted and the
system is not already compromised.

The monitor is a separate process with its own address
space and no other process in the system, including

4

the variants, can directly manipulate its memory space.
Therefore, it is difficult to compromise the monitor by
taking control of a program variant. Moreover, since the
monitor does not process user inputs and only acts as a
proxy to dispatch user inputs to the variants, it is difficult
to compromise it by sending it malicious inputs.

Conventional system call monitors [24] are suscepti-
ble to mimicry attacks, e.g., [32]. These monitors ex-
pect certain sequences of system call invocations; if the
monitored program does not follow any of the known
sequences, they raise an alarm and stop execution. The
conventional monitors cannot check and verify all the
arguments passed to the system calls, especially contents
of buffers written to output devices. This is because
input data and OS behavior varies between sequences of
system calls, changing the arguments and making them
unpredictable. Mimicry attacks can remain undetected
by keeping system calls the same as those that would
have been invoked by the legitimate program, while
only changing some of the system call arguments. For
example, assume a legitimate Apache server opens an
HTML file and sends its contents over the network.
A mimicry attack could keep the open system call
intact and pass the path of a file that contains sensitive
information instead of the HTML file to the system call.
In this scenario the Apache server would send sensitive
information over the network and a naive system call
monitor would not be able to detect the attack. Mimicry
attacks are not effective against our monitor because the
MVEE checks both system calls and their arguments.

2.2 System Call Execution

A MVEE and all the variants executed in this system
must act as if only one variant was running convention-
ally on the host operating system. The monitor is re-
sponsible for providing this behavior by running certain
system calls on behalf of the variants and providing the
variants with the results.

We examined the system calls of the host operating
system (Linux) one by one and considered the number
and types of possible arguments that can be passed to
them. Depending on the effects of these system calls and
their results, we specified which ones can be executed by
the variants and which ones must be run by the monitor.
The decision is based on the following parameters:

• System calls that change the state of the system are
executed by the monitor and the results are copied
to the variants. For example, a system call that
creates a file on the system must be executed once
by the monitor and the variants are not allowed to
run it.

• Non-state-changing system calls that return volatile
results must also be executed by the monitor, and
the variants must receive identical results of the
system call. For example, reading the system time
(gettimeofday) must be performed by the mon-
itor and the variants only receive the results. This

is necessary to keep the variants in conforming
states in the course of execution and to prevent false
positives.

• Non-state-changing system calls that produce im-
mutable results can be executed by the variants. For
example, uname, which returns information about
the operating system, is executed by all the variants.

These are only general rules for system call execution.
It is still necessary to investigate all system calls one by
one in practice because of side effects to later system
calls. Some system calls, such as chdir, must be exe-
cuted by all the variants and also by the monitor. The
monitor needs to run this system call to synchronize
its working directory with that of the variants. This
is required because the variants may later perform a
file operation that is intercepted and executed by the
monitor, but they may not provide the full path of the
file.

The system call write must sometimes be executed
by the monitor and sometimes by the variants. The
file descriptor that is passed as an argument to write
determines who executes the system call. A write to
the standard output is executed by the monitor, but if
the variants write to their own variant-local pipes, the
write is executed by the variants. When the variants
read input data, the monitor intercepts the input, and
then sends identical copies of the data to all the variants.
This is not only required to mimic the behavior of a
single application, but it is also essential to prevent
attackers from compromising one variant at a time.

File, socket, and standard I/O operations are per-
formed by the monitor and the variants only receive the
results. When a file is opened for writing, for example,
the monitor is the only process that opens the file and
sets the registers of the variants so that it appears to them
that they succeeded in opening the file. All subsequent
operations on such a file are performed by the monitor
and the variants are just recipients of the results. This
method would fail if the variants tried to map a file
to their memory spaces using mmap, because the file
descriptor received from the monitor was not actually
opened in their contexts and, hence, mmap would re-
turn an error. This would cause a major restriction
because shared libraries are mapped using this approach.
Therefore, we allow the variants to open files locally if
requested to be opened read-only. Mapping shared li-
braries is allowed, but mapping a file opened for writing
fails. However, mmap is rarely used in this manner.

When the mmap system call is used to map a file
into the address space of a process, reads and writes
to the mapped memory space are equivalent to reads
and writes to the file, and can be performed without
calling any system call. This could allow an attacker
to take control over one variant and compromise the
other variants using shared memory. To prevent this
vulnerability, we deny any mmap request that can create
potential communication routes between the variants
and only allow MAP_ANONYMOUS and MAP_PRIVATE.

5

MAP_SHARED is allowed only with read-only permission.
In practice, this does not seem to be a significant limita-
tion for most applications.

Variants are allowed to create anonymous pipes, but
all data written to the pipes is checked by the monitor
and must conform to the monitoring rules. Named pipes
are created and operated by the monitor and the variants
just receive the results.

For security purposes, our platform puts certain re-
strictions on the exec family of system calls. These
system calls are allowed only if the files that are required
to be executed are in a white-list passed to the monitor.
The full path of all executables that each variant is
allowed to execute is provided to the monitor. All of
these executables must be properly diversified.

3 MONITOR-VARIANT COMMUNICATION

The monitor spawns the variants as its own children
and traces them. Since the monitor is executed in user
mode, it is not allowed to directly read from or write
to the variants’ memory spaces. In order to compare
the contents of buffers passed to the system calls, the
monitor needs to read from the memory of the variants.
Also, it needs to write to their address spaces if a system
call executed by the monitor on behalf of the variants
returns results in memory.

We use the debugging facilities of Linux (ptrace)
to implement the monitor [38]. A possible method of
accessing the memory spaces of the variants is to use
ptrace when the variants are suspended. However,
since ptrace only accesses four bytes at a time, it
has to be called many times to access a large block
of memory. Every call requires a context switch from
the monitor to the OS kernel and back, which makes
this technique inefficient for reading large buffers. To
improve performance, we create a memory block per
variant that is shared by the monitor and one variant.
When the monitor needs to write to the memory space of
a variant, the monitor writes data to the shared memory
and then forces the variant to read from the shared
memory and write the data to its address space. Reading
from the address space of a variant is done similarly; the
monitor forces the variant to read the needed memory
block from its address space and write it to its shared
memory and then the monitor reads the block from the
shared memory.

We also tried named pipes (FIFOs) and chose shared
memory for performance reasons. Although FIFOs are
more efficient than ptrace, they are not as efficient as
shared memory (see Figure 3) because the maximum size
of data that can be transferred at a time using FIFOs is
small and not configurable.

The downside of both shared memory and FIFOs is
the security risk, since any process can connect to them
and try to access their contents. However, each shared
memory block has a key and processes are allowed to
attach a block only if they have the correct key. When we

1 

10 

100 

1000 

10000 

100000 

8  32  128  512  2K  8K  32K  128K 

El
ap

se
d 
Ti
m
e 
(M

ic
ro
se
co
nd

s)
 

Buffer Size (Bytes) 

ptrace  FIFO  Shared Memory 

Fig. 3. Comparison of the performance of transmitting
data using shared memory, FIFOs, and ptrace. The
vertical axis shows the elapsed time, in microseconds, to
transfer a buffer and the horizontal axis shows the size of
the buffer. Both axes are logarithmic scale.

create shared memory blocks, their permissions are set
so that only the user who has executed the monitor can
read from or write to them. Therefore, the risk is limited
to the case of a malicious program that is executed
in the context of the same user or a super user. Both
cases would be possible only when the system is already
compromised. Also note that a compromised variant
cannot access another variant’s shared memory even if
it somehow found the other variant’s shared memory
key, because attaching a shared memory block needs a
system call invocation that is intercepted by the monitor.

Attaching the shared memory blocks to variants, as
well as reading from and writing to them, is not built
into the applications executed by the MVEE. It is the
monitor’s responsibility to force the variants to perform
these operations. The creation of the shared memory
blocks is postponed until they are needed. At such a
point, the monitor creates the shared memory blocks
and forces the variants to attach the appropriate share
memory blocks. In order to read from or write to shared
memory, the monitor makes each variant allocate a block
of memory. The monitor uses this memory block to
inject a small piece of code that copies the contents of
a buffer to another one (similar to memcpy). Reading
from or writing to the shared memory blocks is done by
this piece of code. When the monitor needs to access
a variant’s memory space, it backs up the variant’s
registers and sets the instruction pointer of the variant to
the injected code. When the variant is resumed, it starts
executing the memcpy-like code. A system call marks the
end of the memcpy-like code. This instruction notifies
the monitor as soon as the variant finishes copying. The
monitor then restores the original state of the application.

In order to protect this piece of code from being over-
written, the monitor forces the variant to mark it write-
protected immediately after the monitor injects the code
and before it resumes the variants normal execution.

6

A malicious variant cannot mark it writable without
being detected by the monitor, because it has to invoke
a system call to do so.

Our experiments show that the time spent to trans-
fer a buffer using ptrace increases linearly with the
buffer size, but it is almost constant using FIFOs or
shared memory when the buffer is smaller than 4 KB
(see Figure 3). Shared memory has the least overhead
when the buffer size is larger than 40 bytes and for
buffers fewer than 40 bytes in length, ptrace is the
most efficient mechanism. Therefore, the monitor uses
ptrace to transfer buffers smaller than 40 bytes and
uses shared memory for transferring larger ones. For a
128 KB buffer, shared memory is more than 900 times
faster than ptrace and 20 times faster than FIFOs.
Hence, using shared memory greatly improves the mon-
itoring performance for applications that frequently pass
large buffers to the system calls.

4 INCONSISTENCIES AND NON-DETERMINISM

Internal conditions and behavior of the system that runs
the variants, as well as system events, can cause di-
vergence in behavior of the variants. These divergences
cause the monitor to raise false alarms and interrupt
execution of the variants. There are several sources of
inconsistencies among the variants that can cause false
positives in multi-variant execution. Scheduling of child
processes and threads, asynchronous signals, file de-
scriptors, process IDs, time, and random numbers must
be handled properly to prevent false positives.

4.1 Scheduling

Scheduling of child processes or threads created by
the variants can cause the monitor to observe different
sequences of system calls and raise a false alarm. To
prevent this situation, corresponding variants must be
synchronized to each other. Suppose p1 and p2 are
the main variants, and p1−1 is p1’s child and p2−1 is
p2’s child. p1 and p2 must be synchronized to each
other and p1−1 and p2−1 must also be synchronized
to each other. We may choose to use a single monitor
to supervise the variants and their children or we can
use several monitors to do so. Using a single monitor
can cause unnecessary delays in responding to their
requests. Suppose p1 and p2 invoke a system call whose
arguments take a large amount of time to compare. Just
after the system call invocation and while the monitor is
busy comparing the arguments, p1−1 and p2−1 invoke a
system call that could be quickly checked by the monitor,
but since the monitor is busy, the requests of the children
cannot be processed immediately and they have to wait
for the monitor to finish its first task.

Our simple solution is to spawn a new monitoring
thread for each set of new child processes or threads.
This is done by the monitor responsible for the par-
ent variants whenever the variants create new child

Variant 1 Variant 2

Syscall 1 Syscall 1

signal handler

Syscall 8

signal

Fig. 4. Asynchronous signals can cause the monitor to
observe different sequences of system calls and raise a
false alarm.

processes or threads. Monitoring of the newly created
children is handed over to the new monitor.

As mentioned before, we use ptrace to synchronize
the variants. Unfortunately, ptrace is not designed to
be used in a multi-threaded debugger. As a result, hand-
ing the control of the new children over to a new monitor
is difficult. We let the parent monitor start monitoring the
new child variants until they invoke the first system call.
After this point, we create a new monitoring thread and
let the new thread take the control of the new variants.
More details of this technique can be found in [38].

4.2 Synchronous Signal Delivery
Handling asynchronous signals is one of the major
challenges in multi-variant execution, as it can cause
the variants to execute different sequences of system
calls. For example, assume variant p1 receives a signal
and starts executing its handler. p1’s signal handler then
invokes system call s8, causing the monitor to wait for
the same system call from p2. Meanwhile, variant p2
has not received the signal and calls system call s1
in its normal code flow. This behavior is considered a
discrepancy and raises a false alarm in the system. This
scenario is depicted in Figure 4.

A possible solution is to deliver signals synchronously
only at synchronization points, i.e., at system calls. The
problem with this approach, however, is that CPU-
intensive applications may not invoke any system call
for a long period of time. Our empirical results show that
our technique adds 0.5 mili-second delay in delivering
signals [39], while delivering signals at system calls
could cause hundreds of mili-seconds of delay in CPU-
intensive applications. Such a long delay might not be
acceptable for certain types of signals, such as timer
signals, and could also reduce responsiveness of certain
applications.

We provide a solution that is not based on delivering
signals at system calls. Our solution benefits from the
fact that whenever a signal is sent to a variant, the
operating system pauses the variant and notifies the
monitor. The monitor can either deliver the signal to the
variant, or save it and ignore it for now.

The monitor immediately delivers signals that ter-
minate program execution, such as SIGTERM, and sig-

7

nals generated by CPU exceptions, such as SIGSEGV.
If the CPU exception is caused by the normal flow of
an application, it must appear in all the variants and,
therefore, all of them receive it in the same execution
state. Hence, the signal is automatically delivered to all
the variants in the same state and delivering the signals
immediately does not cause false alarms even if variants
use user-defined signal handlers for the exceptions. If the
exception is raised only in one or more variants but not
all of them, immediate signal delivery causes an alarm
in the system. This is a true alarm because it is an actual
divergence in the behavior of the variants.

Signals that do not terminate program execution and
are not caused by CPU exceptions are delivered to all
the variants synchronously, meaning that signals are
delivered to all of them either before or after a synchro-
nization point, i.e., a system call, but not necessarily at
the synchronization point. In other words, if we call the
time span between any two consecutive system call in-
vocation a “signal time frame”, our algorithm guarantees
that a signal is delivered to all the variants in the same
signal time frame.

Our algorithm postpones delivery of a signal until at
least half of the variants receive the signal. At such a
point, the signal is delivered to all the variants in the
current signal time frame. Variants that have not received
the signal at such a point and have invoked a system
call are forced to skip the system call and spin-wait for
the signal (see [38] for details on skipping a system call).
The skipped system call is later restored and the variants
run them. The subsequent section provides more details
about the algorithm.

We use majority voting to determine when to deliver
signals and also to find non-compliant variants. Using
majority voting in signal delivery works well in multi-
variant execution systems that terminate all variants
upon detection of one or more non-compliant variants.
However, as explained in Section 2, terminating only
non-compliant variants and continuing with the compli-
ant majority cannot always guarantee correct results.

The synchronous signal delivery mechanism guaran-
tees that the same sequence of system calls is observed
in all the variants. However, if a signal handler invokes a
system call and passes a frequently changing value from
the program context to the system call, a false alarm may
still be raised. A frequently changing value is a value
that changes more than once between two system call
invocations.

As an example, suppose that a loop is executing in
each variant. If there is no system call invocation in
the body of the loop, the iterations of the loop are not
synchronized among the variants. Now, if a signal is
raised and the signal handler prints the value of the
loop induction variable, the monitor raises a false alarm
when the loop induction variable, which is passed as an
argument of a system call, has different values in the
variants. Due to the nondeterministic nature of signals,
signal handlers usually do not use frequently changing

Syscall Syscall

Syscall

Syscall Syscall Syscall Syscall

p1 p2 p3 p1 p2 p3

Syscall SyscallSyscall Syscall Syscall

Signal sent
by the

Monitorp1 p2 p3 p2 p3

Syscall 1 Syscall 1Syscall 1

p1 p2 p3

 Syscall 2 Syscall 2 Syscall 2

Syscall 1 Syscall 1Syscall 1

p1 p2 p3

 Syscall 2

 Syscall 2

 Syscall 2

Syscall 2

(a)

(b)

(c)

Signal Ignored
signal

Injected
loop

Skipped
system call

Syscall 2

Syscall

p1

Fig. 5. Example scenarios of synchronizing signals

values from program contexts. Therefore, we expect such
false alarms to be unlikely in real-life applications.

4.2.1 Example Scenarios

We illustrate our synchronous signal delivery algorithm
using a few example scenarios. Figure 5 shows three
different scenarios (a, b and c) of how a signal can be
received by three variants (p1, p2, and p3). We use three
variants to simplify the scenarios, but the algorithm can
be applied to any number of variants larger than or equal
to two.

The left side of each depicted scenario shows how
a signal would be delivered to the variants in the ab-
sence of the synchronous signal delivery mechanism.
A vertical arrow shows the flow of a process, a thick
horizontal line is a signal, and a rectangle represents a
system call. The right side illustrates how the delivery of
the signal is synchronized by our multi-variant monitor.
A thick dashed gray line is a signal that is ignored by the
monitor, and a double-stroke horizontal line represents
the same signal when it is later sent to the process
by the monitor. A circle shows a loop that is injected
to a process to make it spin-wait for a signal, and a
gray dashed rectangle is a system call that is skipped
by the monitor to make sure that the process receives
the signal before the system call. A skipped system call
is later restored by the monitor and executed by the
corresponding process. The three scenarios depicted in
this figure can be extrapolated to other scenarios using
the rules explained in Section 4.2.

Part a of Figure 5 shows a scenario in which p1
receives a signal before a system call, but the other two
variants receive it after the system call. When p1 receives

8

the signal, the operating system pauses the variant and
notifies the monitor. The monitor adds the signal to the
pending signal list of p1 and waits for the other variants.
Since the other variants invoke the system call and do
not receive the signal, the monitor ignores the signal
and resumes p1. After the system call, p2 receives the
signal and is paused. At this time, the majority of the
variants have received the signal. The monitor waits for
p3 to stop either at a signal or a system call. The amount
of time that the monitor waits for such a variant can
be configured. p3 receives the signal shortly afterwards.
Since p1’s signal was ignored before the system call, the
monitor itself has to send it to p1 again. The monitor
sends the signal to p1 and delivers it to all the variants
after the system call.

Part b of Figure 5 shows a scenario where two variants
(p1 and p2) receive a signal before a system call, but p3
invokes the system call before receiving the signal. p1
and p2 are paused by the OS when they receive the signal
and the monitor waits for p3, which invokes a system
call. Since the majority of the processes have received
the signal before the system call, the monitor makes
p3 skip the system call and spin-wait for the signal. p3
receives the signal while executing the spin-wait loop.
The monitor delivers the signal to all the variants and
make p3 run the skipped system call.

Part c of the figure shows the last scenario, where p1
receives a signal before syscall 1, but p2 and p3 invoke the
system call. Similar to scenario a, the monitor ignores the
signal received by p1 and resumes it. After syscall 1, p2
receives the signal and, therefore, the majority of variants
have the signal in their pending lists. The monitor waits
for p3, skips syscall 2 invoked by p3, and make it spin-
wait for the signal. While waiting for p3, p1 is running.
It invokes syscall 2 before p3 receives the signal. When p3
receives the signal, the monitor sends the signal to p1 and
makes it skip syscall 2. p1 receives the signal immediately
after skipping the system call. Now that all the variants
have received the signal, the monitor delivers it to all,
restores syscall 2 in p1 and p3, and makes them run the
system call again and synchronizes all the variants at
this system call.

4.2.2 Implementation
Our monitor sometimes needs to make the variants skip
a system call temporarily in order to deliver signals syn-
chronously. After skipping the system call, the monitor
has to make the variant wait for the signal. A small tight
loop is used for this purpose. The monitor injects the
code of the loop to the memory space of the variant and
changes the instruction pointer of the variant to point
to this small loop. The variant starts executing the loop
immediately after skipping the system call. The number
of iterations of this loop determines the maximum wait
time for a signal. It can be configured, but we always use
one billion iterations in our prototype system. Normally,
not all of the iterations are executed. The monitor is
notified as soon as the variant receives the signal. After

being notified, the monitor restores the original system
call in the variant and the remaining iterations of the
loop are skipped.

When the signal is not received after all loop iterations
are executed, the variant is considered non-compliant.
We insert a system call invocation instruction after the
loop to dispatch control back to the monitor when the
loop finishes execution. Execution of this instruction
indicates that the variant has not received the signal in
the alloted time period and is non-compliant.

4.3 File Descriptors

Performing file operations is one of the tasks that should
be synchronized and arbitrated in multi-variant execu-
tion. Particularly, writing to files needs to be arbitrated
as we cannot let the variants write to the same file more
than once. As explained in Section 2.2, the monitor lets
the variants open files with read-only permission. The
monitor also allows anonymous pipes that connect the
variants to their children to be created by the variants.
The file descriptors assigned to these files or pipes
are not necessarily the same in different variants and
can cause discrepancies among them. Therefore, it is
necessary that the monitor virtualizes the file descriptors
by replacing them with a replicated file descriptor and
sends this replicated file descriptor to all the variants
identically.

Note that the monitor has to also replicate the file
descriptors that are opened by itself and cannot just send
the same file descriptor received from the kernel to the
variants. The reason is that the monitor must make sure
that the file descriptors assigned to the files that are open
simultaneously are unique. Assume that the variants
request to open file a.txt with read-only permission.
The monitor lets them run the system call and open
the file. The monitor replicates the file descriptor and
assigns a new file descriptor to all the variants. Assume
that the replicated file descriptor is 5. Later the variants
try to open b.txt with read/write permission. The
monitor intercepts the system call and opens the file
itself. Assume that the file descriptor assigned to the
monitor by the kernel is also 5. If the monitor sent this
file descriptor without virtualizing it, the variants would
use the file descriptor 5 to refer to both files. If the
variants invoked read to read file descriptor 5, it would
not be clear whether they want to read a.txt or b.txt.
Hence, it is important that the monitor virtualizes all the
file descriptor no matter who has opened them.

The monitor keeps a mapping between the actual file
descriptors and the replicated ones. All operations on file
descriptors opened in the monitor context are performed
by the monitor and the variants only receive the results.
When the variants request operations on files opened
in their contexts, the monitor replaces the virtual file
descriptor by the actual file descriptors and then allows
the variants to run the system call.

9

4.4 Process IDs

Every process in the system has a unique process ID. The
process IDs can cause discrepancy among the variants.
For example, if the variants write their process IDs to the
standard output, the string composed by each variant
would have a different process ID and, therefore, would
cause a false alarm. Therefore, our monitor changes the
output of system calls that return a process ID and
reports the process ID returned to the first variant to
all variants.

The monitor keeps a mapping between the reported
process IDs and the actual one for each variant. If
variants invoke a system call that receives a process ID
as an argument, such as kill, the monitor replaces the
reported process IDs with the actual process IDs and
then lets the variants run the system call. Hence, the
OS receives the correct values when running the system
call. If a process ID is not found in the mapping, it is
considered as the process ID of a third process and is
not replaced by the monitor. The same approach is taken
for the group, parent, and thread group IDs.

4.5 Time and Random Numbers

Time can be another source of inconsistency in multi-
variant execution. When the variants invoke a system
call that reads the system time, e.g., gettimeofday,
the monitor invokes the same system call only once and
sends the result to all the variants.

Random numbers that are generated by the variants
would be different if the variants used different ran-
dom seeds. Removing the sources of inconsistencies
makes all the variants use the same seed and generate
the same sequence of random numbers. Reading from
/dev/urandom is also monitored. The variants are not
allowed to read this pseudo file directly. The monitor
reads the file and sends identical values to all the vari-
ants. Therefore, all the variants receive the same random
number.

4.6 False Positives

Other than the discussed cases, the situations discussed
below can still cause false positives. Although the vari-
ants are synchronized at system calls, the actual system
calls are not usually executed at the exact same time. As
mentioned above, files that are requested to be opened as
read-only are opened by the variants. If any of these files
is changed by a third application after one variant has
read it and before it is read by the other variants, there is
a race condition and the variants receive different data,
which causes divergence among them.

Another false positive can be triggered if variants
try to read the processor time stamp counters directly,
e.g., using the RDTSC instruction available with x86 pro-
cessors. Reading the time stamp counters is performed
without any system call invocation, so the monitor is
not notified and cannot replace the results that the

Source
Code

Modified
Compiler
(GCC 4.2)

Modified
Library

(Dietlibc)

Multi-
Variant

Execution

Modified RTL generation
Modified code generation

Modified assembly
code of the library

Implemented the
multi-variant monitor
~10,000 LoC in C++

Fig. 6. Overview of steps taken to generate a variant and
run it in our multi-variant environment

variants receive. It is necessary to use system calls, e.g.,
gettimeofday, to read the system time, although it has
higher performance overhead.

Applications that output their memory addresses,
such as printing the address of objects on the stack or
heap, may trigger a false positive.

5 VARIANT GENERATION

One of the key features of the multi-variant execution
technique that distinguishes it from n-version program-
ming [2] is automated variant generation. The variants
of a program are generated automatically from the same
source code, eliminating the need to rewrite the variants
manually. This feature significantly reduces the costs of
development and maintenance of the variants.

Previous automated code variation techniques have
focused on creating code diversity (e.g., instruction set
randomization [3], [21]) and reordering of allocated
memory objects or blocks (e.g., address space layout
randomization [33], [44]). We use different stack growth
directions between variants. Running two variants that
grow the stack in opposite directions in a multi-variant
environment helps preventing exploitation of stack-
based buffer overflow vulnerabilities.

The simplest and most common form of buffer over-
flow attacks is stack smashing [14]. An attacker overwrites
the return address of the currently running function.
This causes the program to jump to a desired location
in memory that contains the injected code, and execute
it. Function pointer overwrite is a similar attack in
which vulnerabilities are exploited to overwrite function
pointers rather than return addresses. When the function
whose pointer is overwritten is called, control is trans-
ferred to the overwritten address that usually contains
the malicious code. These attacks can be prevented by
using two variants that grow the stack in opposite
directions [36].

We modified gcc 4.2.1 and dietlibc to generate the
variants. More details about the compiler technique to
reverse the stack growth direction can be found in [36]
and [38]. Figure 6 shows the process of generating and
executing a variant in our multi-variant environment.

Since reversing the stack growth direction changes the
instruction flow in programs and also in library func-
tions, reverse-stack variants have different library entry

10

points than original programs and benefit from protec-
tions that library entry point randomization provides.
We also use system call number randomization [10] to
generate a larger number of variants. Note that our
monitor is capable of running any number of variants
and any variation technique as long as the order of
system call invocations in the variants is the same.

5.1 False Negatives

False negatives in this context are defined as a situation
where the multi-variant monitor is unable to determine
that an attack occurred. This is a possibility when all of
the variants are not protected against a particular class
of vulnerability.

As an example, consider a program vulnerable to a
heap-based buffer overflow attack running in a multi-
variant environment, but the variation techniques in use
were the stack-based techniques described in [19]. Be-
cause these methods are not designed to protect against
heap-based buffer overflows, it follows that there is no
innate protection provided against that class of vulnera-
bility. Consequently, an attack launched against a multi-
variant environment with this configuration would be
successful at compromising all variants and any system
calls made in injected code would be executed success-
fully by the variants.

To mitigate false negatives, we recommend using the
set of variation techniques that gives the attacker the
smallest attack surface. For a two-variant environment,
the combination with the smallest attack surface is one
of instruction set randomization, system call number
randomization, or register randomization in concert with
library entry point randomization [19]. That combina-
tion gives the minimal attack surface for several attack
vectors and is sufficient to cover a majority of arbitrary
code execution vulnerabilities in the Vulnerability Notes
Database’s top 20 highest scoring vulnerabilities.

Another possible way for a false negative to occur is
for an attacker to construct and launch a very specific,
targeted attack against the multi-variant environment
and the variants. This would require knowledge of how
many variants are in use, how the variants are created,
along with any and all parameters that were used. For
example, if instruction set randomization was a variation
technique, the attacker would need to know the key.
Using this information, the attacker would then have to
manually exploit each variant. In the exploited state, the
first exploited variant has to behave exactly as the other
variants by making any necessary equivalent system
calls that the uncompromised variants do in order for
the monitor to not notice that the first variant has been
compromised while the attacker is exploiting a second
variant. This process would have to be repeated individ-
ually for the remaining variants. Once the attacker has
successfully exploited all of the variants, the attacker has
the ability to direct the variants to invoke system calls
and execute code on the attacker’s behalf.

Given the complexity of this attack and the number of
steps required to complete an attack on the multi-variant
environment in this manner, we find that the likelihood
of finding a dynamic instruction sequence that satisfies
these requirements in a reasonable time frame to be very
low. The difficulty level also increases significantly with
the number of variation techniques and the number of
variants in use in the multi-variant environment.

6 EVALUATION

To demonstrate the effectiveness of the multi-variant
execution environment, we use a customized test suite
that includes common benchmarks and frequently used
applications. This suite allows us to evaluate the security
claims and assess the computational tradeoff in CPU-
and I/O-bound operations. While our MVEE is capable
of running different number of variants and many types
of variation techniques, we evaluate it with two, three,
and four variants.

6.1 Security
A MVEE is well-suited for network-facing services, and
we use documented past exploits of Apache 1.3.29 and
Snort 2.4.2 as test vectors. The vulnerabilities and their
corresponding exploits are documented with specific
environments. Details of these environments include
versions of the compiler, operating system, as well as
supporting libraries. Changes in one or many of these
components of the environment can prevent an exploit
from working. As a result, we reconstruct three repre-
sentative exploits for Apache and Snort in our testing
environment, a process that replicates the steps that an
attacker would take. Other than these vulnerabilities that
exist in real-life applications, we also write small pro-
grams with intentional buffer overflow vulnerabilities to
test our MVEE.

All vulnerabilities used for testing are stack-based
buffer overflow exploits and can be exploited using the
techniques described in [14]. They are chosen because
they are representative for a large number of stack-based
buffer overflow errors that are present in software, and
because these exploits have been available publicly and
likely to have been used to obtain illicit access to Apache
servers or systems charged with protecting networks.
These exploits simulate real-world conditions, as it is
likely that other server programs still contain similar
implementation errors [41]. Finally, they are chosen be-
cause they are part of the main source package and not
dependent on third party libraries or plugins.

Apache mod rewrite Vulnerability: The Apache
mod rewrite vulnerability was first reported by Ja-
cobo Avariento. It affects all versions prior to Apache
1.3.29 [13]. The vulnerability allows arbitrary code exe-
cution.

Apache mod include Vulnerability: An anonymous
author with the pseudonym “Crazy Einstein” discov-
ered a vulnerability in Apache’s mod include module in

11

2004 [15]. The vulnerability is a stack-based buffer over-
flow in a static 8 KB array. If the attack is successful, it
opens a local shell that can be used to execute commands
on the victim computer.

Snort BackOrifice Preprocessor Vulnerability: A
stack-based buffer overflow vulnerability in the Snort in-
trusion detection system was discovered by Neel Mehta
of ISS X-Force in 2005 [27]. Because of the trusted nature
of Snort and the permissions required in order to make
it effective, this vulnerability was considered extremely
serious since it can give elevated or system-level privi-
leges on a target system and the victim computer does
not need to be targeted directly [25].

For all vulnerabilities, when the variants with a down-
ward growing stack are given the exploit code the
exploits succeed and an attacker is able to obtain illicit
access to the target computer. When an upward growing
stack variant is presented with the same exploit code, the
variant continues to run since the buffer overflow writes
into unused memory. When variants of each direction are
run in parallel and under supervision of our monitor,
the attempted code injection is detected and execution
is terminated because shellcode executed by the down-
ward growing stack variant contains system calls. All
the buffer overflow attacks on our test programs are also
detected by the MVEE, because the attack vectors either
cause divergence between the variants or cause one or
both variants to be terminated by the OS.

The attack vectors also fail when we use them to attack
a two-variant MVEE that runs a conventional executable
along with a randomized system call executable. The
injected attack code does not contain proper system
calls for the randomized variant and consequently, the
discrepancy is detected by the monitor. Obviously, the
combination of system call number randomization and
reverse stack growth is successful in disrupting the
attacks as well.

6.2 Performance Benchmarking

The second component of our test suite includes tests
designed to assess the performance of the MVEE. Our
test suite includes find 4.1, a MD5 sum generation
program (md5deep 2.0.1-001), Apache 1.3.29 and SPEC
CPU2000. We measure the performance penalty of these
applications while running on the MVEE. The results
are collected in a worst-case scenario where the MVEE
waits indefinitely for the variants at the synchroniza-
tion points. Although the MVEE concept is targeted
towards running security sensitive or network-facing
applications, the chosen set of benchmark programs are
representatives of CPU- and I/O-bound applications that
may be executed in such an environment.

find is used as an I/O-bound test. In this test, we
search the whole disk partition of our test platform for
all C source code files (files ending in “.c”). md5deep
generates MD5 sums for files and directories of files. It
provides a good mix of CPU- and I/O-bound operations.

md5deep is run over two CD ISO images, totaling 1.5 GB
of data. In order to see what effect the monitor has on
Apache, we use ApacheBench to request a 27 KB HTML
document. ApacheBench requests the file 20,000 times
from a separate computer connected to the target server
via an unloaded gigabit ethernet connection.

SPEC CPU2000 is an industry standard benchmark for
testing the computational ability of a system. We use all
but the FORTRAN and C++ tests, because we currently
only have a C library that operates in the reverse-stack
mode. All performance evaluations are performed on
an Intel Core 2 Quad Q9300 2.50 GHz system running
Ubuntu Linux 9.04 and Linux kernel 2.6.28-11. Disk-
based tests are run several times to remove disk caching
effects from skewing the results, and then run again
several times to collect data.

Figure 7 presents the results of the performance eval-
uation of the MVEE. The results show that the monitor
imposes an average performance penalty of less than
17% for running two variants. The type of variation
technique used does not have a significant impact on
the performance of the MVEE for most of the bench-
marks. Average performance penalty of the MVEE is 30%
and 37% for running three variants and four variants,
respectively. Note that the baseline of the comparison
(100% performance) is the conventional execution of the
unmodified executable that writes the stack downward.
Therefore, in cases where the benchmark is not multi-
threaded or multi-process, only one of the processor
cores is used when running the baseline and the other
cores are idle.

The I/O-bound tests experience a larger performance
penalty than the SPEC tests. Figure 8 shows that the
I/O-bound tests invoke a significantly larger number of
system calls than the SPEC tests. These system calls and
their arguments are sent to the monitor and compared.
Transferring contents of arguments and performing the
comparison causes higher overhead in these benchmark
programs. The figure also shows that gcc invokes a larger
number of system calls than other SPEC benchmarks
and, therefore, suffers form higher performance degra-
dation.

As the number of variants increases, the performance
penalty of multi-variant execution increases. There are
two main reasons for this: First, the monitor has to
compare the data flowing out of a larger number of
variants and also copy results of system calls to them.
The comparison and copying overhead increases with
the number of variants. Secondly, the overhead of syn-
chronizing a larger number of variants is higher. When
the number of variants is larger, it is less likely that all
the variants obtain processing resources simultaneously.
As a result the monitor has to wait longer at each system
call for all the variants to arrive.

Other than the above reasons, limited memory band-
width causes a performance drop in certain benchmarks.
Figure 8 shows density of L2 cache misses obtained
using valgrind. The L2 cache miss density in equake, art,

12

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

cra
0y
	

gz
ip	
 gc

c	

vp
r	

pa
rse
r	
 	

pe
rlb
mk
	

mc
f	

ga
p	
 	

vo
rte
x	
 	

bz
ip2
	
 	

tw
olf
	
 	
 	

eq
ua
ke
	
 	

ar
t	
 	
 	

	

me
sa
	
 	
 	
 	

ap
ac
he
	

fin
d	

md
5d
ee
p	

av
er
ag
e	

Performance	
 of	
 the	
 MVEE	

DD	
 ExecuJon	
 DU	
 ExecuJon	
 DR	
 ExecuJon	
 DC	
 ExecuJon	
 DRU	
 ExecuJon	
 DRUC	
 ExecuJon	

Fig. 7. Comparison of the performance of the MVEE relative to conventional programs. DD execution presents
performance of two identical copies of a program with a downward growing stack, DU execution is a mix of downward
and upward growing stacks, DR is a mix of downward and system call randomized, DC is a mix of downward and the
combination of system call randomized and reverse stack (C), DRU is a mix of the three variants D, R, and U, and
DRUC is a mix of four variants D, R, U, and C.

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

0.E+00	

1.E+07	

2.E+07	

3.E+07	

4.E+07	

5.E+07	

6.E+07	

cra
0y
	

gz
ip	
 gc

c	

vp
r	

pa
rse
r	
 	

pe
rlb
mk
	

mc
f	

ga
p	
 	

vo
rte
x	
 	

bz
ip2
	
 	

tw
olf
	
 	
 	

eq
ua
ke
	
 	

ar
t	
 	
 	

	

me
sa
	
 	
 	
 	

ap
ac
he
	

fin
d	

md
5d
ee
p	

Av
er
ag
e	

Sy
st
em

	
 C
al
ls
	
 P
er
	
 S
ec
on

d	

L2
	
 C
ac
he

	
 M
is
se
s	

Pe

r	

Se
co
nd

	

L2	
 Miss	
 Density	
 Syscall	
 Density	

Fig. 8. L2 cache miss and system call density. A higher L2 cache miss or system call density causes a higher
performance degradation

and mcf is higher than the other benchmarks. Memory
accesses that do not hit the L2 cache are directed to the
main memory. As a result, benchmarks with high L2
cache miss density put a burden on the main memory
and suffer from a larger performance drop when the
number of variants increases.

Considering the extra overhead imposed by a larger
number of variants, it is often beneficial to combine
different variation techniques in one variant and reduce
the total number of variants. The coverage that a variant
with a combination of variation techniques provides is
equal to the aggregation of coverages of each individual
variation technique.

Our measurements show that the synchronous signal
delivery has negligible performance overhead in pro-
grams that use signals occasionally. The overhead is
on average 20% for an artificial program configuration
where a signal is sent every millisecond. Space con-
straints do not allow us to provide the results in detail.
Interested readers can refer to [39] for further details.

7 RELATED WORK

Cox et al. [12] present an n-variant system similar to
ours. They automatically generate variants and then run
them in parallel on a monitor that is integrated into
the Linux kernel. Therefore, their monitor is part of the
trusted computing base, while our user-space monitor
does not need extended rights and needs not be trusted.
They present two variation techniques: address space
partitioning, which changes the base address of code and
data segments in the variants and is implemented as
an extension of the linker; and instruction set tagging,
which inserts a tag bit before each instruction and is
implemented using binary rewriting. In contrast, our
variation techniques (stack reversing and system call
number randomization) are implemented as extensions
of the compiler, which allows more aggressive changes
to the instruction stream. They mention asynchronous
signal delivery as an important source of false positives,
but do not present a solution for this problem. We

13

present an algorithm that handles asynchronous signals
correctly.

The n-variant system of Bruschi et al. [8] is imple-
mented in user space using ptrace for Linux, equally
to our system. They present address space partitioning
as their only variation technique. The second variant is
in a different region of the address space, so all high-
order bits of addresses are different, and they “shift” the
memory segments so that the low-order bits are different
as well. Their randomization technique is applied by the
linker, while we use a modified compiler and can there-
fore use more variation techniques. They also mention
asynchronous signal delivery as an important source of
false positives, but in contrast to us they do not solve
the problem.

Berger et al. [4] present DieHard, a novel randomizing
memory manager that achieves probabilistic memory
safety by approximating an infinite-sized heap. While
only securing the memory allocator of an application
already reduces the exploitability of memory errors, they
also provide a replicated execution mode where several
instances of the application are run in parallel. The only
variation is the random seed of the memory manager,
which changes the address of every allocated object. All
variants run the same code, while our modified com-
piler creates different code for every variant. They can
only defeat heap-based vulnerabilities, while we protect
against a larger set of vulnerabilities including stack-
based vulnerabilities. They only monitor standard I/O
and they do not mention the problem of asynchronous
signal delivery.

Replication can also be specialized to a certain do-
main by combining different off-the-shelf products of
different vendors. Vandiver et al. [43] use a setting of
replicated databases and synchronize at the level of SQL
transactions. Reynolds et al. [34] diversify a web server
using different products running on different operating
systems and synchronize at the level of HTTP requests.
Rodrigues et al. [35] replicate file systems at the level
of the NFS protocol. All these approaches require a
customized high-level synchronization at the application
level because different products produce a completely
different sequence of system calls and signals. In con-
trast, our approach is generally applicable and does not
require multiple products.

Security is not the only application of replicated execu-
tion: Yumerefendi et al. [45] use it to prevent information
leaks. A sandboxed doppelganger receives only scrubbed
content instead of sensitive information. If the output of
the original and the doppelganger differs, an information
leak is detected. This is monitored at the system call
level. They use monitoring techniques similar to our
system, but they do not need variation techniques. Their
monitor is implemented as a kernel extension, while
we use a user-space monitor. They delay asynchronous
signal delivery until the next synchronization point, i.e.,
the next system call, is reached. Our algorithm solves the

signal delivery problem without introducing wait times
for a system call.

In one of the earliest mentioning of replicated ex-
ecution, Knowlton [23] proposes a system to detect
programming errors. Code fragments are reordered in
a second variant and executed on a second processor.
The monitoring is done by hardware, while we do not
require hardware support. Additionally, this system does
not use advanced variation techniques.

Replicated execution has a long history and is fre-
quently used in the fault tolerant community [1]. In N-
version programming, multiple independent solutions
of an algorithm are implemented separately from the
same specification. In contrast to our approach where
variants are devised automatically from the same source
code, this multiplies the implementation and mainte-
nance costs. Additionally, it is possible that different
implementors make the same mistakes, i.e., that the
variants contain the same vulnerabilities [22]. Running
identical replicas on different hardware (see for exam-
ple [5], [6], [9], [29], [40], [42]) or on a hypervisor on the
same hardware [7] improves fault tolerance, but may not
be used to prevent attacks.

8 CONCLUSIONS

A multi-variant execution environment runs multiple
versions of a program simultaneously and monitors their
behavior. Discrepancy in behavior of the variants is an
indication of an attack. Using this technique, we prevent
exploitation of vulnerabilities at run time. It is comple-
mentary to other methods that remove vulnerabilities,
such as static analysis. Instead of finding and removing
the vulnerabilities, our method accepts the inevitable
existence of vulnerabilities and prevents their exploita-
tions. A major advantage of this approach is that it
enables us to detect and prevent a wide range of threats,
including “zero-day” attacks (see Section 6.1). Multi-
variant execution is effective even against sophisticated
polymorphic and metamorphic viruses and worms.

Many everyday applications are mostly sequential
in nature. At the same time, automatic parallelization
techniques are not yet effective enough on such work-
loads. Even in parallel applications, such as web servers,
limited I/O bandwidth prevents us from putting all
available processing resources into service. As a result,
parallel processors in today’s computers are often par-
tially idle. By running programs in MVEEs on such
multi-core processors, we put the parallel hardware in
good use and make the programs much more resilient
against code injection attacks.

ACKNOWLEDGEMENTS

This research effort is partially funded by the Air Force
Research Laboratory (AFRL) under agreement number
FA8750-05-2-0216. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or

14

endorsements, either expressed or implied, of AFRL or
any other agency of the United States Government.

REFERENCES
[1] A. Avizienis. The n-version approach to fault-tolerant software.

IEEE Transactions on Software Engineering, SE-11(12):1491–1501,
1985.

[2] A. Avizienis and L. Chen. On the implementation of n-version
programming for software fault tolerance during execution. In
Proceedings of the International Computer Software and Applications
Conference, pages 149–155. IEEE Computer Society, 1977.

[3] E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic, and D. Zovi.
Randomized instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 281–289. ACM Press, 2003.

[4] E. Berger and B. Zorn. DieHard: Probabilistic memory safety for
unsafe languages. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 158–
168. ACM Press, 2006.

[5] K. Birman. Replication and fault-tolerance in the ISIS system.
ACM SIGOPS Operating Systems Review, 19(5):79–86, 1985.

[6] D. Black, C. Low, and S. K. Shrivastava. The Voltan application
programming environment for fail-silent processes. Distributed
Systems Engineering, 5:66–77, 1998.

[7] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance. ACM Transactions on Computer Systems, 14(1):80–107,
1996.

[8] D. Bruschi, L. Cavallaro, and A. Lanzi. Diversified process
replicae for defeating memory error exploits. In Proceedings of
the International Workshop on Information Assurance, pages 434–441.
IEEE Computer Society, 2007.

[9] M. Chereque, D. Powell, P. Reynier, J. Richier, and J. Voiron.
Active replication in Delta-4. In Proceedings of the International
Symposium on Fault-Tolerant Computing, pages 28–37. IEEE Com-
puter Society, 1992.

[10] M. Chew and D. Song. Mitigating buffer overflows by operating
system randomization. Technical Report CMU-CS-02-197, Depart-
ment of Computer Science, Carnegie Mellon University, 2002.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the USENIX Security Symposium, pages
63–78. USENIX Association, 1998.

[12] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems: A
secretless framework for security through diversity. In Proceed-
ings of the USENIX Security Symposium, pages 105–120. USENIX
Association, 2006.

[13] M. Dowd. Apache Mod Rewrite Off-By-One Buffer Overflow
Vulnerability, 2006.

[14] E. Levy (“Aleph One”). Smashing the stack for fun and profit.
Phrack, 49, 1996.

[15] C. Einstein. Apache mod include Local Buffer Overflow Vulner-
ability, 2004.

[16] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Conference,
volume 136. USENIX Association, 1992.

[17] W. Hsu and A. Smith. Characteristics of I/O traffic in personal
computer and server workloads. IBM Systems Journal, 2003.

[18] Intel. Paul Otellini Keynote. Intel Developer Forum, 2006.
[19] T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and M. Franz.

On the effectiveness of multi-variant program execution for vul-
nerability detection and prevention. In International Workshop on
Security Measurements and Metrics (MetriSec), 2010.

[20] B. Kauer. Oslo: Improving the security of trusted computing.
In Proceedings of the USENIX Security Symposium, pages 229–237.
USENIX Association, 2007.

[21] G. Kc, A. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the
ACM Conference on Computer and Communications Security, pages
272–280. ACM Press, 2003.

[22] J. Knight and N. Leveson. An experimental evaluation of the
assumption of independence in multi-version programming. IEEE
Transactions on Software Engineering, 12(1), 1986.

[23] K. Knowlton. A combination hardware-software debugging sys-
tem. IEEE Transactions on Computers, 17(1), 1968.

[24] C. Ko, G. Fink, and K. Levitt. Automated detection of vulner-
abilities in privileged programs by execution monitoring. In
Proceedings of the Annual Computer Security Applications Conference,
pages 134–144. IEEE Computer Society, 1994.

[25] A. Manion and J. Gennari. US-CERT Vulnerability Note
VU#175500. United States Computer Emergency Readiness Team,
2005.

[26] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker:
An execution infrastructure for TCB minimization. In Proceedings
of the European Conference on Computer Systems, pages 315–328.
ACM Press, 2008.

[27] N. Mehta. Snort Back Orifice Parsing Remote Code Execution,
2005.

[28] D. Murray, G. Milos, and S. Hand. Improving Xen security
through disaggregation. In Proceedings of the Conference on Virtual
Execution Environments, pages 151–160. ACM Press, 2008.

[29] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing
determinism for the consistent replication of multithreaded corba
applications. In SRDS ’99: Proceedings of the 18th IEEE Symposium
on Reliable Distributed Systems, page 263, Washington, DC, USA,
1999. IEEE Computer Society.

[30] National Institute of Standards and Technologies. National Vul-
nerability Database, 2009. http://nvd.nist.gov.

[31] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. Electronic Notes in Theoretical Computer Science, 2003.

[32] C. Parampalli, R. Sekar, and R. Johnson. A practical mimicry
attack against powerful system-call monitors. In ACM Symposium
on Information, Computer, and Communication Security, pages 156–
167. ACM Press, 2008.

[33] PaX Team. Address Space Layout Randomization (ASLR).
[34] J. C. Reynolds, J. E. Just, E. Lawso, L. A. Clough, R. Maglich,

and K. N. Levitt. The design and implementation of an intrusion
tolerant system. In Proceedings of the International Conference on
Dependable Systems and Networks, pages 285–292. IEEE Computer
Society, 2002.

[35] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction
to improve fault tolerance. ACM SIGOPS Operating Systems
Review, 35(5):15–28, 2001.

[36] B. Salamat, A. Gal, and M. Franz. Reverse stack execution in a
multi-variant execution environment. In Workshop on Compiler and
Architectural Techniques for Application Reliability and Security, 2008.

[37] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and
M. Franz. Multi-variant program execution: Using multi-core
systems to defuse buffer-overflow vulnerabilities. In Proceedings
of the International Conference on Complex, Intelligent, and Software
Intensive Systems, pages 843–848. IEEE Computer Society, March
2008.

[38] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra: Intrusion
detection using parallel execution and monitoring of program
variants in user-space. In Proceedings of the European Conference
on Computer Systems, pages 33–46. ACM Press, 2009.

[39] B. Salamat, C. Wimmer, and M. Franz. Synchronous signal
delivery in a multi-variant intrusion detection system. Technical
report, School of Information and Computer Sciences, University
of California, Irvine, 2009.

[40] S. Shrivastava, P. Ezhilchelvan, N. Speirs, S. Tao, and A. Tully.
Principal features of the Voltan family of reliable node architec-
tures for distributed systems. IEEE Transactions on Computers,
41(5):542–549, May 1992.

[41] C. Taschner and A. Manion. US-CERT Vulnerability Note
VU#196240. United States Computer Emergency Readiness Team,
2007.

[42] A. Tulley and S. Shrivastava. Preventing state divergence in
replicated distributed programs. In Proceedings of the Symposium
on Reliable Distributed Systems, pages 104–113. IEEE Computer
Society, 1990.

[43] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating byzantine faults in transaction processing systems using
commit barrier scheduling. In Proceedings of the Symposium on
Operating Systems Principles, pages 59–72. ACM Press, 2007.

[44] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime ran-
domization for security. In Proceedings of the Symposium on Reliable
Distributed System, pages 260–269. IEEE Computer Society, 2003.

[45] A. Yumerefendi, B. Mickle, and L. Cox. TightLip: Keeping appli-
cations from spilling the beans. In Proceedings of the Symposium
on Networked Systems Design and Implementation, pages 159–172.
USENIX Association, 2007.

15

Babak Salamat is a research engineer at Qual-
comm Bay Area Research and Development
center. He works on developing high perfor-
mance, power efficient just-in-time compilers
and run-time systems for dynamically typed lan-
guages. He received his Ph.D. in computer sci-
ence from the University of California, Irvine in
2009. He has received his B.Sc. and M.Sc. de-
grees in computer engineering both from Sharif
University of Technology, Tehran, Iran in 1998
and 2001 respectively.

Todd Jackson received his B.A.Sc in computer
engineering from Queen’s University, Kingston,
Canada, and his M.A.Sc. in software engineer-
ing from the Royal Military College of Canada,
Kingston, Canada. He is currently studying to-
wards his Ph.D. in computer science at the Uni-
versity of California, Irvine. His main research
interests are computer and network security,
covert communications, and intrusion detection.

Gregor Wagner is working toward his PhD de-
gree at the University of California, Irvine under
the supervision of Professor Michael Franz. He
received his masters degree in 2007 from the
University of Technology, Graz, Austria. His re-
search interests include memory management
and security in virtual machines which resulted
in numerous contributions to Mozilla Firefox.

Christian Wimmer is a postdoctoral researcher
at the University of California, Irvine. He works
on novel compilation techniques and optimiza-
tions for just-in-time compilers, information flow
analysis, secure execution of code, and lan-
guage based security. He received a Dr. techn.
degree and a Dipl.-Ing. degree in Computer Sci-
ence, both from the Johannes Kepler University
Linz, Austria. He implemented the linear scan
register allocator for the Java HotSpot client
compiler of Java 6, and worked on several re-

search projects that are based on Java and JavaScript VMs.

Michael Franz is a Professor of Computer Sci-
ence in the Donald Bren School of Information
and Computer Sciences at the University of Cal-
ifornia, Irvine (UCI), a Professor of Electrical En-
gineering and Computer Science (by courtesy)
in UCI’s Henry Samueli School of Engineering,
and the director of UCIs Secure Systems and
Software Laboratory. He is currently also a vis-
iting Professor of Informatics at ETH Zurich,
the Swiss Federal Institute of Technology, from
which he previously received the Dr. sc. techn.

and the Dipl. Informatik-Ing. ETH degrees. He is a Senior Member of
the IEEE and a Distinguished Scientist member of the ACM.

