
Decentralized Information Flow Control on a Bare-Metal
JVM

Karthikeyan Manivannan Christian Wimmer Michael Franz
Department of Computer Science

University of California, Irvine
{kmanivan, cwimmer, franz}@uci.edu

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.3 [Programming Languages]: Language Con-
structs and Features; D.4.6 [Operating Systems]: Secu-
rity and Protection

General Terms
Security, Languages

Keywords
Information flow control, Java virtual machine, Hypervisors,
bare-metal jvm

1. INTRODUCTION
A large array of privacy sensitive applications like bank-

ing servers, medical records processors, and legal software
are Java applications. Preserving user privacy is a neces-
sary feature in such applications. For example, in a medi-
cal records system, only the authorized doctors and medical
staff should be allowed access to patient information. Decen-
tralized Information Flow Control (DIFC) [10] provides an
effective means for preserving user privacy. In a traditional
setup where the Java Virtual Machine (JVM) runs on top of
an Operating System (OS), sensitive information flows both
through the JVM and the OS, and effective enforcement of
information flow policies requires tracking data across both
these entities [12]. Implementing information flow control
in such systems requires modification, and subsequent au-
diting, of both the JVM and OS source code.

In this paper, we provide a brief description of a design
for implementing DIFC for Java, based on Guest VM [6] -
a metacircular ”Bare-metal” JVM (BMJVM) from Sun Mi-
crosystems. A BMJVM is a JVM that can run directly, on
platform-virtualization software called Hypervisors, without
an underlying OS. BMJVMs are becoming popular for host-
ing Java applications because of their higher server utiliza-
tion and management benefits. Since our DIFC system is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSIIRW ’10, April 21–23, 2010, Oak Ridge, Tennessee, USA.
Copyright 2010 ACM 978-1-4503-0017-9 ...$10.00.

based on a metacircular BMJVM, i.e., a BMJVM imple-
mented in Java, all the code that has to be audited is in
a type-safe language. This arguably is easier to audit than
the code of a traditional JVM-on-OS based information flow
system, where the OS is usually written in a type-unsafe lan-
guage like C/C++.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an introduction to BMJVMs. Section 3 de-
scribes the design of Guest VM. Section 4 introduces the
concepts of DIFC. Section 5 provides a brief description of
DIFC on GuestVM. Section 6 and Section 7 explain the re-
lated work and conclusion respectively.

2. BARE-METAL JVM
Platform Virtualization using hypervisors has become a

ubiquitous method for increasing server utilization and re-
ducing costs. Hypervisors also provide benefits like easy
administration, fault isolation and migration. Hypervisors
typically run directly on the hardware and host several OSs,
called domains, that share the hardware resources. A tra-
ditional OS, like Linux, has to support different kinds of
applications which makes it difficult for it to be specialized
for a specific program like the JVM. For instance, a JVM
has its own memory protection and thread handling mecha-
nism, which makes similar mechanisms in the OS redundant.
In a typical setup, JVMs running on a virtualized machine
would run inside OS instances which in turn run on the Hy-
pervisor. In such a setup, performance could suffer because
the OS has very little knowledge about the semantics of
the JVM. For instance, the OS could preempt the Garbage
Collector (GC) thread of a stop-the-world GC where appli-
cation threads cannot progress until the GC thread finishes.
Both the OS and Hypervisor implement page swapping, but
neither of them have information about the memory usage
pattern of the Java application.

BMJVMs solve these problems by pushing typical OS
components like thread scheduling, memory management,
networking stack and filesystem into the BMJVM and thus
eliminating the need for an OS. Hypervisors provide a good
platform for running BMJVMs - they abstract away the
hardware and they provide lower-level thread scheduling and
memory management APIs than an OS. BMJVMs also avoid
the cost of context switching to and from the OS. Figure 1
depicts the architecture of a virtualized machine running a
BMJVM and a traditional JVM. A BMJVM can also be
designed without networking and filesystem services, like in
the case of IBM J9 on Libra [1], where the BMJVM borrows
these services from an OS domain running on the same hy-

Hardware

Hypervisor

OS

JVM

Java
App

Native
App

Java App

N/w stack

File System

BMJVM

Figure 1: A virtualized machine running a BMJVM
and a traditional JVM

pervisor. Liquid VM [13], and Azul JVM [5] are examples
of BMJVMs that have become a popular choice for hosting
enterprise Java applications.

3. GUEST VM
Guest VM is a BJVM based on the Maxine JVM [8]

and it runs on the Xen Hypervisor [2]. Xen can virtualize
hardware to run multiple guest OSs. One of these OS in-
stances, called domain0 (Dom0) in Xen terminology, boots
along with Xen and it has privileges to control other guest
OS instances which are called domainU (DomU). Guest
VM runs as a DomU guest and a traditional OS like Linux
serves as the control domain (Dom0). Guest VM is metacir-
cular and has an all Java software stack, i.e., components
like the file system and the networking stack are written in
Java. This provides an opportunity for the Maxine JVM’s
dynamic compiler to optimize the complete software stack
from the application down to hypervisor API [6]. Maxine
has a method substitution annotation that allows a native
method call to be substituted by a call to a Java method.
Since Guest VM implements the entire software stack in
Java, it uses this substitution annotation to replace all the
JDK platform related native methods with equivalent Java
methods. Though Guest VM is mostly written in Java, its
binary image is statically linked to an enhanced version of
the C-based MiniOS microkernel. MiniOS handles starts-
up, scheduling and provides a block device driver to Guest
VM. Guest VM has to use Dom0 disk drivers to write files
to the disk. There is a connection from Guest VM to Dom0,
through Xen, which is modeled like a default block device.
Similarly, Guest VM uses the network interface drivers on
Dom0 to communicate with the network interface. Figure 2
shows the detailed architecture of virtualized machine run-
ning a Guest VM instance, and an OS instance running a
traditional JVM.

4. DECENTRALIZED INFORMATION FLOW
CONTROL

The following section gives an introduction to DIFC as
modeled by Meyers [10]. A DIFC system allows users to at-
tach secrecy and integrity labels to data and track their flow
through a system without the need for a centralized entity to

Hardware

Xen Hypervisor

Control
Domain
(Dom0)

Java App
JDK

Traditional
JVM

JDK
Platform
Library

C libraries

Operating System

Java App
JDK

Maxine JVM JDK
Platform
Library

Network stack +
File System

MiniOS microkernel

Guest VMTraditional JVM

Figure 2: A virtualized machine running a control
domain (Dom0), a traditional JVM on top an OS,
and GuestVM. Components shaded in blue are writ-
ten in Java and components shaded in orange are
written in C/C++.

enforce the secrecy and integrity policies. Security policies
are associated with system entities like users, threads and
processes. These entities are called principals. A secrecy
policy restricts the use of data to only the principals that
have sufficient authority. An integrity policy ensures that a
principal reads only data slots that have sufficient credibility
and that no writes occur to data slots with higher credibility
than that of the principal. A label attached to a data has a
set of policies which govern the use of that data.

A DIFC system ensures that information can flow between
principals only as long as secrecy and integrity constraints
associated with the corresponding label are satisfied. Prin-
cipals also have capabilities which allow them to classify or
declassify data. Each label L has a set of owners, owners
are principals whose data was used in the creation of the
data covered by L. Owners of a label can specify the prin-
cipals that are authorized to read the data associated with
the label. Principals with sufficient capabilities can modify
flow policy for a label. For example, an owner can declas-
sify data for principal P, by adding P to the set of readers.
A principal P, can also grant another thread the capability
to declassify data that P owns. Data owned by multiple
principals can be declassified only if all the owners agree to
declassify it. A principal can act on behalf of another princi-
pal if it has the appropriate privileges to do so. A principal
does not have to go through a trusted central principal to
declassify data or to grant another principal privileges that
it owns.

An advantage of DIFC is that other principals do not have
to trust a principal’s declassification decisions, as a princi-
pal cannot dilute the security policies of principals that it
does not act for [10]. DIFC can be implemented either at
the language-level, at the OS-level or as a hybrid of both
these techniques. Purely language based techniques are not
good at tracking flow of information through OS resources
like files and sockets. OS based techniques are not good at
tracking information flow through program data structures.
Hybrid techniques overcome these limitations by combining
these two approaches. Section Section 6 talks about these
techniques in detail.

Example. The following example shows how a hybrid
DIFC works. Consider an e-commerce website where a user,
A, can use a plugin, C, to find out the percentage of other
users who purchased books that A purchased. A can give
C access to read her entire purchase history, but ability
to only declassify book-purchase history. All other partici-
pating users provide similar privileges to C. The similarity
result that C computes will have security labels of book-
purchase data from all the participants as it is derived from
book-purchase history of all the users. This would make it
impossible for C to reveal the result to A, as other users
have not granted A the ability to read their book-purchase
data. But since all participants have given C the ability
to declassify their corresponding book-purchase data, C can
combine these privileges to declassify the result and publish
it to A. C cannot reveal a user’s non-book purchase data to
other users as it does not have the privileges to declassify
non-book data. If C tries to create a new file with a user’s
complete purchase history, the file would automatically have
all the labels associated with the user’s purchase data, which
would make it impossible for someone without these privi-
leges to read the file. This example shows how principals do
not have to go through a central entity to grant privileges
to other principals and how principals cannot reveal user
information without appropriate privileges.

5. DIFC ON GUEST VM
The following section describes the design for a Guest VM

based hybrid DIFC system for Java. The system tracks in-
formation flow through program data structures, and OS
resources like the file system and the networking stack. The
system uses Guest VM threads as principals, and the la-
bel/capability system like in [11] and Laminar [12]. The
user can specify security policies by defining lexically scoped
secure regions with security labels and capabilities. Guest
VM threads get initialized with certain labels and capabil-
ities and these change dynamically based on the security
regions that the thread executes. A DIFC Monitor inside
the Guest VM ensures that a thread entering a security re-
gion acquires the capabilities provided by the region and
only executes within the secrecy and integrity restrictions of
the region.

Meyers introduces the concept of runtime principals [10],
where security regions can use principals as types to model
systems that are heterogenous with respect to principals.
Since the file system and networking stack in Guest VM are
written in Java, information flow policies for these entities
can be specified using runtime principals. Figure 4 shows
how file system code can use runtime principals to enforce
information flow. The Reference Monitor can track OS re-
sources just like it tracks program data structures. This
eliminates the need for having a separate logic for DIFC en-
forcement on filesystem and network resources. DIFC sys-
tems like Laminar cannot make use of this technique as the
filesystem and networking logic is part of the OS.

Unlike Laminar, where type-unsafe C/C++ code has to
be modified to implement DIFC in the OS, the ability to
specify security policies for filesystems and network stack in
Java, removes the need to modify any type-unsafe C/C++
code. Since Guest VM uses C-based components like Min-
iOS, Xen and the Dom0 drivers to access the physical disk
and network, one could argue that the type-unsafe code in
these entities needs to be audited and trusted. These entities

Hardware

Java App

JDK

Maxine JVM JDK Platform
Library

MiniOS microkernel

DIFC Monitor

Network
Interface

Network FileSystem

Disk

Application
Thread

Network
Interface

File

Label

Capability

Guest VM File
System Image

Dom0

Xen Inter-Domain Communication

Device Drivers

Xen

Figure 3: Architecture for a Guest VM based DIFC.
The DIFC Monitor inside Guest VM handles DIFC
for both program data structures and OS resources.
Dom0 drivers are used to communicate with the disk
and network interface.

can be removed from the trusted code base by encrypting
file and network data within Guest VM before sending it
out. If the Java application’s disk usage is not high, the
file system can be implemented as a RAM file system which
gets encrypted and stored onto disk, either periodically, or
before shutdown. Figure 3 shows the architecture for the
Guest VM based DIFC system. Laminar, the only known
functional hybrid DIFC, does not talk about what trust as-
sumptions it makes about network and filesystem drivers.
The absence of an underlying OS protects GuestVM from
OS based intrusion attacks. For example, Laminar uses the
Linux Security Module to enforce information flow policies
at the OS level, this could expose the system to rootkit based
attacks [4].

public int open (String name, int flags) {
final principal userThread = Runtime.getUserThread();
if (!DIFC.isUserAllowedOpen(userThread, name, flags)) {

return Error.USER_NOT_ALLOWED;
}
............
............

}

Figure 4: This figure shows an example of how infor-
mation flow policies for files can be enforced using
runtime principals inside filesystem code.

6. RELATED WORK
The idea of decentralizing information flow control was

introduced by Meyers [10]. DIFC systems can be classified
into three types based on the abstraction level used to im-
plement DIFC.

OS based DIFC. Asbestos [3] implements a new OS that
uses labeling and isolation mechanisms to provide informa-
tion flow guarantees. HiStar [14] is a new OS that tries to
minimize the the amount of trusted code while providing
strict information flow control using labels and a page table
based protection mechanism. Flume [7] uses a user-level ref-
erence monitor to track information flow at the granularity
of processes. OS based techniques work well at the granular-
ity of OS entities, but they either cannot, or are inefficient at
tracking information flow through program data structures.

Programming Language based DIFC. Programming
Language based DIFC systems like Jif [11] and Jflow [9]
extend the type system of a language to allow static and
runtime enforcement of information flow policies. These sys-
tems are good at detecting information flow violations at the
level of program data structures, but cannot detect leaks in
OS entities like files and network interfaces.

Hybrid DIFC. Laminar [12] allows the user to specify
security policies for Java programs which it efficiently tracks
through the JVM and the OS. Laminar augments the Jikes
RVM to track information flow at the data structure level
and it uses Linux Security Modules (LSM) to implement
OS-level enforcement. The use of LSM could expose the
system to sophisticated rootkit based attacks. The trusted
code base also includes LSM code written in type-unsafe
C/C++. In contrast, all the trusted code in a Guest VM
based DIFC is in Java, which is arguably easier to audit
than C/C++ code.

7. CONCLUSION
Hybrid DIFC systems allow effective implementation of

DIFC across all layers of the software stack. Implement-
ing DIFC on a BMJVM has the benefits of not having to
modify and audit OS code. Implementing DIFC on a meta-
circular BMJVM allows us to write all the components in
Java. Having filesystem and networking code implemented
in Java allows uniform DIFC monitoring for both program
data structures and OS resources. The trusted code base is
completely within the DIFC enabled Guest VM, we argue
that this facilitates easier audit and maintenance in compar-
ison to a traditional hybrid DIFC system.

8. ACKNOWLEDGEMENTS
Parts of this effort have been sponsored by the Califor-

nia MICRO program and Industrial sponsor Sun Microsys-
tems under Project No. 07-127, as well as by the National
Science Foundation (NSF) under grants CNS-0615443 and
CNS-0627747. Further support has come from unrestricted
gifts from Sun Microsystems, Google and Mozilla, for which
the authors are immensely grateful. The authors would like
to thank the Guest VM and Maxine teams at Sun Labs for
their guidance and support.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Any opinions, find-
ings, and conclusions or recommendations expressed here are
those of the authors and should not be interpreted as nec-
essarily representing the official views, policies, or endorse-
ments, either expressed or implied, of the NSF, any other
agency of the U.S. Government, or any of the companies
mentioned above.

9. REFERENCES
[1] Ammons, G., Appavoo, J., Butrico, M., Da Silva, D.,

Grove, D., Kawachiya, K., Krieger, O., Rosenburg, B.,
Van Hensbergen, E., Wisniewski, R.: Libra: a library
operating system for a jvm in a virtualized execution
environment. In: Proceedings of the 3rd international
conference on Virtual execution environments, ACM
(2007) 54

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.:
Xen and the art of virtualization. In: Proceedings of
the nineteenth ACM symposium on Operating
systems principles, ACM (2003) 177

[3] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey,
C., Ziegler, D., Kohler, E., Mazieres, D., Kaashoek,
F., Morris, R.: Labels and event processes in the
Asbestos operating system. ACM SIGOPS Operating
Systems Review 39(5) (2005) 30

[4] grsecurity: grsecurity - LSM comments.
http://www.grsecurity.net/lsm.php (2010) [Online;
accessed 14-March-2010]

[5] Inc., A.S.: Azul compute appliances. http://www.
azulsystems.com/products/compute appliance.htm
(2010) [Online; accessed 14-March-2010]

[6] Jordan, M.: Project Guest VM.
http://research.sun.com/projects/guestvm/ (2010)
[Online; accessed 14-March-2010]

[7] Krohn, M., Yip, A., Brodsky, M., Cliffer, N.,
Kaashoek, M., Kohler, E., Morris, R.: Information
flow control for standard OS abstractions. ACM
SIGOPS Operating Systems Review 41(6) (2007) 334

[8] Mathiske, B.: The maxine virtual machine and
inspector. (2008)

[9] Myers, A.: JFlow: Practical mostly-static information
flow control. In: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, ACM New York, NY, USA
(1999) 228–241

[10] Myers, A., Liskov, B.: A decentralized model for
information flow control. In: Proceedings of the
sixteenth ACM symposium on Operating systems
principles, ACM (1997) 142

[11] Myers, A., Zheng, L., Zdancewic, S., Chong, S.,
Nystrom, N.: Jif: Java information flow. Software
release. Located at http://www. cs. cornell. edu/jif
2005 (2001)

[12] Roy, I., Porter, D., Bond, M., McKinley, K., Witchel,
E.: Laminar: practical fine-grained decentralized
information flow control. ACM SIGPLAN Notices
44(6) (2009) 63–74

[13] Systems, B.: Understanding LiquidVM.
http://download.oracle.com/docs/cd/E13223 01/
wls-ve/docs92-v11/config/lvmintro.html (2010)
[Online; accessed 14-March-2010]

[14] Zeldovich, N., Boyd-Wickizer, S., Kohler, E.,
Mazieres, D.: Making information flow explicit in
HiStar. In: Proc. of the 7th OSDI. 263–278

