
SlimVM: A Small Footprint Java Virtual Machine
for Connected Embedded Systems

Christoph Kerschbaumer∗† Gregor Wagner∗ Christian Wimmer∗

Andreas Gal∗ Christian Steger† Michael Franz∗

∗University of California, Irvine †Technical University Graz, Austria

{ckerschb, wagnerg, cwimmer, gal, franz}@uci.edu steger@tugraz.at

ABSTRACT
The usage of cellular phones, PDAs, and other mobile de-
vices has increased dramatically over the past ten years.
Java is targeted to be one of the most popular execution
environments on such systems. However, since mobile de-
vices are inherently limited in terms of local storage capac-
ity and Java requires large amounts of library code to be
present on each client device, it is crucial to reduce the code
and memory footprint to ensure Java’s success on such sys-
tems. SlimVM’s approach eliminates all unnecessary code
and meta information on mobile devices.

We present a solution for the next generation of mobile
computing environments for persistent connected embedded
systems where all code resides on a network server and is
requested at run time by the Java virtual machine on the
client. All application and library code is analyzed on the
server prior to execution on the mobile device, and only
code essential for execution is sent to the client on demand.
Java bytecode is manipulated and transferred to the client
in the form of pre-linked basic blocks. Measurements show
a reduction of the memory footprint of up to 70%.

Categories and Subject Descriptors
D.3.4. [Programming Languages]: Processors-Incremental
compilers; optimization; runtime environments

General Terms
Design, Optimization, Performance, Experimentation

Keywords
Java virtual machine, optimization, connected embedded
systems, code-size reduction, just-in-time compilation

1. INTRODUCTION
The efficient use of a Java virtual machine as an execu-

tion environment has become popular over the last decade.

c© ACM, 2009. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Proceedings of the 7th Inter-
national Symposium on Principles and Practice of Programming in Java,
pp. 133–142.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
http://doi.acm.org/10.1145/1596655.1596678

The idea that a program does not have to be compiled into
machine code for every single platform but can be executed
by a virtual machine on the target device has contributed to
the success of Java virtual machines. The use of virtual ma-
chines is not restricted to personal computers and laptops.
They are also very popular on mobile devices like cellular
phones and PDAs.

However, the memory footprint of a full Java system is
often too big for such devices. Reduced JVMs with smaller
specifications like the Java Platform, Micro Edition [23] con-
tain only a small subset of the class library, and are therefore
not able to execute standard Java applications.

Instead of limiting the Java specification, we present a
client-server approach for mobile devices where all Java code
resides on a network server. Only code that is actually ex-
ecuted is transfered to the client on demand and then ex-
ecuted by a full-fledged Java VM. A significant part of a
Java class is consumed by symbolic names required for the
linking process when the class is loaded. To eliminate this
overhead, we perform most of the linking on the server side
and replace symbolic names with integers. Code is trans-
ferred to the client in the form of pre-linked basic blocks in-
stead of methods. The basic block granularity is beneficial
because many methods contain code that is rarely executed,
e.g., code for exception handling.

In a previous proof-of-concept implementation, we showed
that SlimVM’s approach is feasible [25]. Our previous im-
plementation is based on the KVM [21], which does not sup-
port the full Java specification. Code is transferred from the
server using method granularity, although some basic blocks
are removed using static heuristics. This paper presents an
implementation based on JamVM [15]. We now transfer
code at the basic block granularity and support advanced
features of Java like exception handling and the Java Native
Interface.

Our measurements show that code size reduction, pre-
linking, and dynamic code loading of Java applications can
reduce the memory footprint of a Java virtual machine by up
to 70%. In summary, this paper contributes the following:

• We present a client-server architecture for mobile de-
vices where all application and library code resides on
a network server and is transferred to the client on
demand at the basic block granularity.

• We show how advanced features of Java like exception
handling, the Java Native Interface, and dynamic class
loading are supported by SlimVM.

133

• We evaluate our implementation and show the impact
on memory footprint and network transfer.

The remainder of this paper is structured as follows. Sec-
tion 2 gives a brief overview of the overall architecture of
SlimVM’s approach. Section 3 presents how the server pre-
processes code before it is transferred to the client on de-
mand. Section 4 describes the modifications of the client
virtual machine. Section 5 evaluates our implementation.
Section 6 presents related work, and Section 7 summarizes
and concludes our contributions.

2. SYSTEM STRUCTURE
The implementation of SlimVM is based on the open source

Java virtual machine JamVM [15], a JVM designed for small
memory footprint. The size of the stripped executable on
PowerPC is approximately 220 KB and on Intel approxi-
mately 200 KB. It has a highly optimized interpreter for
bytecode execution and uses a mark-and-sweep garbage col-
lector. Unlike other lightweight JVMs, it supports the full
Java specification including object finalization, the Java Na-
tive Interface, and reflection. It relies on the GNU Classpath
Java library [10], which consists of about 7300 classes with
a total size of about 15 MB.

The principal approach of SlimVM is the idea that a Java
virtual machine can be divided into two: server and client.
The server is in charge of analyzing the whole program prior
to execution on the mobile device. The client is stripped-
down to the functionality of receiving and executing modi-
fied bytecode instructions. This structure allows all applica-
tion and library code to remain on the server, and only the
parts of the code that are going to be executed are trans-
ferred to the client at run time.

A compiler such as javac translates a Java program into
a hardware and operating system independent binary for-
mat, known as the class file format [14]. As illustrated in
Figure 1, the slim compiler processes every class file needed
by the Java application to be executed. It translates the
class into a new slim class format that does not include any
actual bytecode instructions. All bytecode instructions are
kept separately in the form of basic blocks. Whenever possi-
ble basic blocks are pre-linked. Symbolic references to other
methods and fields are already resolved, i.e., the resolution
for bytecode instructions that refer into the constant pool
are done on the server before sending information to the
client.

In our implementation, each class and each method are
represented by a unique integer number, and field names
are replaced with memory offsets. Calls for statically bound
methods reference the appropriate method number directly.
Only dynamically bound methods require a method search
at run time. However, this search is also based on the
method number and not on the method name.

As illustrated in Figure 2, client and server are connected
via a network connection. The server offers a number of call-
back functions in order to support dynamic loading of classes
in the slim class format, bytecode instructions in form of ba-
sic blocks, and meta information. If the connection is lost
or cannot be established SlimVM shuts down. In this case
no class information and no bytecode instructions can be
requested and therefore no Java program can be executed.

Due to the fact that class file information and bytecode
instructions are kept separately on the server, it is possible

Application
slimclass

Application
bytecodes

load

Slimcompiler

pre-link, slimcompile

Server

01 02 f3 00
01 00 00 00
05 28 4c 3b
29 4c 00 00
29 56 00 00
01 00 03 ...

Application.class

compile

public class
HelloWorld {
 ...
 void hello() {
 ...
 }
}

ca fe ba be 00
03 00 2d 00 21
07 00 18 07 00
1a 07 00 1b 07
00 1c 0a 00 03
00 09 0a 00 01
00 0a ...

Application.java Client
(SlimVM)

load request

Network

00 00 08 9e

29 56

29 56 08 28

03 00 a2 4a

29 49

05 28 4c 01

Figure 1: System structure of SlimVM

Network connection

requests

responds

classes,
basic blocks &

metainformationSlimVM

Client

calls

native
method
libraries

application
data files

accesses

Server

BCEL

application
classes

gnu
classpath

analyzes

analyzes

Figure 2: Client-server architecture

that only that parts of the code which are going to be ex-
ecuted are transferred to the mobile device. The analysis
is not feasible for native code libraries that are invoked us-
ing the Java Native Interface (JNI), so all such libraries are
kept on the client. From the point of view of the running
Java application, the network connection is not visible, so
the application executes as if it was fully loaded on the mo-
bile device. Therefore, all application data files are stored
on the client as well.

3. SLIM COMPILER
The slim compiler translates Java class files into the new

slim class format. It uses the Byte Code Engineering Library
BCEL [6], a library that provides a simple API for decom-
pressing, modifying, and recomposing binary Java class files.
BCEL exposes all of the binary components and data struc-
tures declared in the JVM specification as objects. We use
these objects to modify and to generate new bytecode.

We modify the following sections of a standard Java class
file:

134

• A Header that contains the version of the used class
format, several flags like access rights and class at-
tributes.

• Fields define the names and types of instance and class
fields.

• The Constant Pool is used to store constants and sym-
bolic names

• Methods contain the method names and signatures to-
gether with bytecodes and other method attributes.

The constant pool is a table of constants in each class that
contains values, ranging from numeric constants known at
compile time, to method, field, and class references that
must be resolved at run time. In order to keep the bytecode
short, typically all constants are referenced by the bytecode
using an index into the constant pool. Although one con-
stant can be referenced by multiple bytecodes to avoid dupli-
cate entries, the constant pool contains the largest portion of
an average class file, approximately 60%, whereas the byte-
code instructions themselves just make up 12% of an average
class file [1].

As memory consumption and bandwidth are a bottleneck
for connected embedded systems, it is crucial to strip un-
necessary information of a Java class file. Therefore we re-
place method names and class names, which are currently
represented as string constants in the constant pool, by nu-
meric identifiers and modify the corresponding instructions.
Hence, it is possible to drop the whole constant pool except
string constants, for example the string Hello World! of a
hello world program. For this, the slim compiler uses two
major data structures:

• The class mapper is a lookup table that maps every
class name (including its fully qualified package name)
to a numeric identifier.

• The method mapper is a lookup table that maps every
method name (including its signature) to a numeric
identifier.

Consequently, there is a unique number for each fully qual-
ified class name, like java.lang.String, and a unique number
for each method name, like substring(II)Ljava/lang/String for
example. The substring method takes two int values (the
start index and the end index) as a parameter and returns
a new string that is substring of the given string.

Arrays are represented as symbolic names by one or more
leading [followed by the name of the class. Since class names
are no longer represented in the form of string constants, we
use the most significant 8 bits of the classid to specify the
nested array depth. As illustrated in Figure 3, the remaining
24 bits indicate the actual class number. This leads to a
limitation for arrays with a nested depth larger than 255,
but for all practical purposes we consider this limitation as
negligible.

Beginning with system classes like java.lang.Object, java.
lang.Class, or java.lang.String and methods like getSystem-
ClassLoader(), the slim compiler reads and analyzes all class
files needed during the startup phase of SlimVM. These
classes and methods are loaded in the corresponding map-
per first because this information is always needed during
startup. Our implementation ensures that these classes and

classidarray depth

31 30 29 28 27 26 25 24 ...23 22 21 20 19 18 17 16 15 14 13 12 1
02 1 03

Figure 3: Representation of the array depth

methods always have the same identifier. Also primitive
types, like for example int or char, get a distinct numeric
identifier assigned during this phase.

Then, starting with the class file containing the main()
method, the slim compiler analyzes recursively all dependen-
cies of this class. Every new class and method is mapped to
a numeric identifier. The offsets for all static fields and ob-
ject fields of a class are calculated and stored for every class.
This is necessary to replace the field resolution within the
constant pool. The static size and object size for each class,
which is needed by the Java virtual machine for allocating
memory, is calculated during this phase.

Thereafter, the slim compiler starts analyzing the actual
bytecode instructions which are segmented into basic blocks.
All basic blocks are visited and instructions which need to
be updated are modified. Finally, the collected information
(except of all bytecode instructions which remain on the
network server) is written out in the new slim class format.

3.1 Basic Blocks
A basic block is a sequence of instructions with only one

entry and one exit point. That means that no jump in-
structions and also no destinations of jump instructions are
included within a basic block. Only if a bytecode throws an
exception, a basic block can be exited before its end. By
transferring code at the basic block granularity, it is nearly
guaranteed that every transferred instruction is actually ex-
ecuted.

We split all methods into basic blocks and number them
in ascending order. The original Java semantics for branch
instructions where a relative offset defines the jump target
does not work any more. We change all relative offsets to
absolute basic block numbers.

3.2 Modified Instructions
The instruction set of the Java virtual machine consists of

one-byte opcodes followed by zero or more operands. Not all
of the possible 256 instructions are used. The instruction set
currently consists of 212 opcodes, 44 are marked as reserved
and may be used for optimizations within the VM. The Java
virtual machine instruction set can be grouped as follows:

• Load and Store Instructions: These instructions
are used to load values from the local variables onto
the operand stack of a Java virtual machine frame and
vice versa.

• Arithmetic Instructions: These instructions usu-
ally compute a result of two values on the operand
stack and push the result back on the operand stack.

• Type Conversion Instructions: These instructions
allow the conversion between Java virtual machine nu-
meric types.

135

• Object Creation and Manipulation: These in-
structions are used to create objects as well to put
and to get values from that object.

• Operand Stack Management Instructions: Some
instructions within the Java virtual machine directly
manipulate the operand stack.

• Control Transfer Instructions: Branch instructions
could cause the Java virtual machine to continue exe-
cution with an instruction other than the one following
the branch instruction.

• Exceptions: An exception can be thrown either us-
ing a bytecode or by the Java virtual machine if an
abnormal condition is detected.

• Method Invocation and Return Instructions: There
are four instructions that invoke methods within the
Java virtual machine:

1. InvokeVirtual call instance methods of an object.

2. InvokerInterface are used for methods defined in
an interface.

3. InvokeSpecial invokes constructors and other stat-
ically bound instance methods.

4. InvokeStatic call static class methods.

5. Return instructions are distinguished by their type.

At some point during every running Java program, meth-
ods, fields, classes, etc. must be resolved. The process of
finding and replacing the symbolic reference with a direct
reference is called resolution. Resolution in Java follows a
simple scheme. The actual Java bytecode indexes into the
constant pool. The constant at this index is either a prim-
itive type which holds for example a field, method, or a
classname, or it refers to other entries in the constant pool
holding further information in order to resolve the correct
field, method, class, etc.

Since all class files needed for execution of a Java program
are analyzed on the server prior to execution on the mobile
device and since we dropped the whole constant pool, we
manipulated all instructions with a reference in the runtime
constant pool.

As illustrated in Figure 4, the invokespecial opcode is no
longer followed by an index into the runtime constant pool.
The manipulated invokespecial opcode is followed by a nu-
meric identifier for a class, a number for the corresponding
method, and the number of the corresponding basic block.

modified
invokespecial
instruction

opcode

classid

methodid

1 2 3 5 6 7 8

basicblockid

original
invokespecial
instruction

1 2

opcode

index

3 3 4

Figure 4: Invokespecial comparison

Resolving virtual methods is not based on a virtual method
table like in a common JVM. In our implementation the in-
vokevirtual instruction is followed by the class identifier, the

method identifier and the basic block number of the base
class. In order to get the number of arguments, the base
class is resolved. Since we do know the arguments to be
received by the virtual method, we are able to take the this
pointer from the stack which lies beneath the arguments.
Since each method has a unique identifier and since every
method stores the unique numeric identifier of the super-
class, we are able to resolve the correct method. Starting in
the class of the dispatching object we traverse the superclass
chain until a match is found. Invoking an interface method
follows a similar scheme where the interface method of the
base class is resolved first and then the method implement-
ing that interface.

As illustrated in Figure 5, the original getfield opcode
is followed by 2 bytes indicating the index into the run-
time constant pool where the value to be pushed onto the
operand stack is stored. The modified opcode is followed
by an 1 byte identifier which indicates whether the field is
8 bytes or 4 bytes in size and therefore whether 8 bytes (long,
double) or 4 bytes (int) are pushed onto the operand stack.
Another 2 bytes indicate the offset within the object. Thus,
pre-linking increases the size of every manipulated instruc-
tion, but makes the use of the constant pool redundant.

original
getfield
instruction

1 2

opcode

index

3 1 2 3 4

opcode offset

identifier

modified
getfield
instruction

Figure 5: Getfield comparison

3.3 Slim Class Format
Equally to an original class file, the slim class file repre-

sents exactly one class or interface and consists of a stream
of bytes where multibyte data items are stored in big-endian
order. Like an original class file, the slim file includes all in-
formation required to allocate memory on the heap like the
static size and the object size of a class. Furthermore, the
slim class holds flags indicating whether a class has a main
method, a static constructor or is abstract. A slim class also
provides information how many interfaces are implemented.
In contrast to the original file format only a reduced constant
pool is present in the file including constants for output pur-
poses. For every method we store the unique method iden-
tifier, the number of basic blocks within that method and a
flag in case the method is native. The biggest difference is
that no bytecode instructions are present in a slim file. All
bytecodes are kept separately in form of basic blocks on the
server which can be requested individually.

4. CLIENT-SIDE VM MODIFICATIONS
In order to support dynamic code loading, interpret mod-

ified instructions and to load classes in the new format,
we customized the Java virtual machine JamVM. As illus-
trated in Figure 6, we modified parts of JamVM in order to
make it feasible for our approach. Similar to a conventional

136

JVM, where the Class Loader is responsible for the dynamic
loading and thereby creating the internal data structure of
classes, the Class Loader in SlimVM is in charge of loading
classes but with the difference that the class information is
requested over a Network client. This Network client is not
only responsible for requesting class information, but also
for requesting bytecode in form of basic blocks and meta
information.

collects
requests

basic
blocks

executes
bytecodes

<Method invocation>

lookups classes

Network client

Classes

Methods Basic
blocks

loads
classes

Loader

requests
classes

loads
basic
blocks

Exception handlingJava Native Interface

calls <Exception thrown>

Heap

Garbage Collector
Interpreter

Stack

accesses
frames

accesses
objects

Figure 6: SlimVM architecture

Whenever execution of a new application is started, the
client establishes a network connection to the server and
starts with the initialization process. Once the virtual ma-
chine is initialized, the static method main() of the program
to be executed is invoked and the first basic block of this
method is requested from the server. In JamVM the Linker
checks whether the class of an invoked method has been
loaded so far or not. As linking in SlimVM is done on the
server prior to execution on the client, the functionality of
the Linker is limited to a simple Loader. Every time a new
method is invoked, the Loader checks whether the class in-
formation of this method has been transferred to the mobile
device so far or not. Once the class information is loaded in
SlimVM, the Interpreter can directly request basic blocks
over the network client. All class information and basic
blocks requested once are stored on the mobile device which
counteracts the overhead of transferring the same informa-
tion over and over again. The modifications for SlimVM
disregard garbage collecting.

While this approach usually works, there are four parts in
the virtual machine that need additional support: dynamic
class loading, reflection, exception handling, and the Java
Native Interface.

4.1 Dynamic Class Loading
If the client wants to load a class that was not part of the

original class subset, we have to load and analyze it during
runtime. The slim compiler takes the name of the class and
loads it. Equal to the initial phase of slimcompiling, all
classes referenced by an invoke method in this class are also
analyzed, mapped in the classmapper and compiled into the
slim class format.

4.2 Reflection

By using reflection a program is able to to observe and to
modify its own structure and behavior. Reflection gives ac-
cess to class information, allows to read and write fields and
even call methods of a class selected during run time. Since
we change the representation of classes, methods and fields,
we also have to adapt the way that reflection is handled
within the VM.

For example, the reflection API is used to retrieve all con-
structors of a class using the method getConstructors(). This
function returns an array of constructor objects. In our
system, several flags define additional information for ev-
ery method. These flags indicate access control or among
others if a method is a constructor. For this example, we
traverse all methods of the corresponding class and choose
each method with the constructor flag set. In order to allo-
cate enough memory for each object, we need the signature
to calculate the size. The signature of the constructor pub-
lic Foo(String mystring, int myint) is (Ljava/lang/String;I)V.
We only use a short version of the signature that indicates
whether the signature represents a class, an array or a prim-
itive type. In our example, the signature is reduced to (L;I)V
in SlimVM’s approach. Retrieving fields with the API func-
tion getFields() for example is processed in a similar way.
Also flags are stored for every method indicating the size
and the access rights of every field.

Another example is retrieving the name of a class using
reflection. Since every class stores its own unique class iden-
tifier it is possible to call back to the server with this number
and retrieve the corresponding class name.

4.3 Exception Handling
Usually exceptions in the Java virtual machine are han-

dled with assistance of an exception table. Whenever an ex-
ception arises, the JVM performs a lookup into a table that
stores ranges for exceptions and sets the program counter
to the corresponding target where the exception code is
present.

To support exception handling in SlimVM, we mapped
every modified instruction to its original instruction. This
mapping table is stored on the server. Whenever an ex-
ception occurs in the Java virtual machine, the client calls
back to the server giving the numerical identifier of class and
method, the number of the basic block and the offset within
that basic block where the exception occurred. With this
information the server is able to calculate back the original
address where the exception occurred. Taking that address
a lookup in the original exception table is performed where
the offset to the exception code is stored. With this offset
a lookup in the mapping table is performed where the cor-
responding basic block number of the catch block is stored.
This data is sent back to the client and the corresponding
basic block can be requested.

4.4 Java Native Interface
The Java Native Interface [13] is a native programming

interface that allows Java code to interoperate with appli-
cations (hardware and operating system specific programs)
and libraries written in other languages, such as C, C++,
and assembly. Many basic Java library classes depend on
the JNI to provide functionality such as I/O file reading.

In the approach of SlimVM, all native functions are present
on the mobile device. As we changed the representation of
classes and methods, we offer six callback functions in order

137

to resolve meta information. These functions offer a way
to resolve method ids to method names, class ids to class
names and vice versa.

For example, a class should be loaded through the native
function forName() which takes the name of the class to be
loaded from the top of the stack. As illustrated in Figure 7,
the client calls back to the server giving the name of the class
to be loaded. The server takes that name and performs a
lookup in the mapping table to resolve the correct id of that
class. In case the requested class has not been analyzed on
the server so far, it is now loaded. The process of dynamic
class loading is described in more detail in Section 4.1.

Client

getClassId(classname)

sendClassId

getClassData()

sendClassData

Server BCEL

lookupClass()

ClassId

Figure 7: Resolving process of JNI meta information

5. EVALUATION
One of the initial claims of this paper is, to demonstrate

the load overhead of a Java virtual machine. In the next sec-
tion we present the results achieved by off target analyzing
of Java class files, pre linking and on demand code loading.

The test environment consists of a client and a server run-
ning on two separated systems which are connected via a 2.4
GHz WLAN. On the server side we use BCEL version 5.2 for
analyzing and modifying Java class files. The actual server
functionality is integrated in BCEL and runs on an Intel
Pentium 4 PC with 2.53 GHz CPU and 512 MB RAM. The
used operating system for the server is Microsoft Windows
XP Professional. The client consists of an Apple MacBook
with 2 GB 667 MHz DDR2 SDRAM and a 2 GHz Intel Core
2 Duo. The used operating system on the MacBook is Mac
OS X Leopard version 10.5.4. For the developed SlimVM, we
modified and customized the Java virtual machine JamVM
version 1.5.1.

We use a number of test programs and some selected
benchmarks, tested on SlimVM and JamVM, to be able to
compare the gathered results. We use a program with an
empty main method, which is meant to pinpoint the startup
overhead of SlimVM, a simple hello world application and
a program which calculates the factorial of a given number.
In order to be able to make some standardized and com-
parable statements we use some selected benchmarks: The
Linpack [11] benchmark, which performs numerical linear al-
gebra, like vector and matrix operations. The Scimark 2 [17]
benchmark, which measures numerous computational ker-
nels and summarizes the score in approximate Mflop/s. The
FloatingPointCheck of Specjvm98 [20], which measures a
number of floating point operations. The ArithBench and

323 KB

542 bytes

15,600 bytes

4,200 bytes

578 KB

200 KB

original class size (in bytes)
slim class size (in bytes)

ratio in %

HelloWorld.class

String.class

System.class

java.lang.*

java.util.*

java.io.*

0 25 50 75 100

59 KB

89 bytes

2,800 bytes

672 bytes

88 KB

30 KB

Figure 8: Comparison of the class size

LoopBench of JavaGrande [3], which measure arithmetical
and loop operations.

5.1 Class Size Reduction
Stripping unnecessary information of a class file, using a

different way for resolution of classes, methods and fields
and dropping the constant pool makes it possible to shrink
the size of a Java class for transferring runtime critical infor-
mation to the client. The fact, that all bytecode instructions
are swapped out to the server reduces the size of the slim
class format in addition. However, as illustrated in Figure 8,
we are able to reduce the size of Java classes by about 85%.

Dropping the constant pool of the class representation and
pre-linking of basic blocks leads to an overhead for instruc-
tions in terms of multiple transfers of identical constants.
For example, an integer constant is pushed on the stack
five times in a while loop using the ldc instruction. In this
case, one and the same integer constant is transferred to the
client five times. We checked the most common classes like
java.lang.Object, java.lang.Class, java.lang.String, etc. for the
multiple use of integer constants and double constants. Our
measurements show, that appearance of ldc instructions in
these classes does not exceed four. Only once during our
measurements, the same constant was shared by two load
constant instructions. Thus, we consider the overhead of
transferring the constant value as an operand of ldc instruc-
tion as negligible.

5.2 Saved Memory Space
One of the most interesting facts we discovered is, that a

common JVM loads a high amount of a programs bytecode
into memory even though few bytecode suffice for the correct
execution of the program.

For a simple hello world program for example, we analyze
1,268 class files on the server whereas only 195 classes are
loaded in SlimVM (as well as in JamVM) for execution of
that program. The large number of analyzed classes is due
to the fact that all classes referenced by an invoke instruction
are loaded and analyzed recursively on the server. Further-
more, we analyze 38,800 basic blocks whereas only 1,000
basic blocks with a size of 48 KB are loaded. In contrast
to JamVM, which loads 98 KB of bytecode instructions. As
illustrated in Figure 9, this demonstrates, that about 50%
of the bytecode instructions loaded by a virtual machine are
not executed and therefore not needed for the correct exe-
cution of that program.

138

JamVM
SlimVM

ratio in %

Empty main() method

HelloWorld program

Factorial program

Linpack

Scimark2

SpecJVM.FloatingPointCheck

JavaGrande.ArithBench

JavaGrande.LoopBench

0 25 50 75 100

64 KB

98 KB

98 KB

102 KB

104 KB

102 KB

105 KB

103 KB

17 KB

48 KB

48 KB

50 KB

51 KB

50 KB

53 KB

50 KB

Figure 9: Space savings for lazy loading of bytecode
instructions

Empty main() method

HelloWorld program

Factorial program

Linpack

Scimark2

SpecJVM.FloatingPointCheck

JavaGrande.ArithBench

JavaGrande.LoopBench

0 25 50 75 100

SlimVM

ratio in %
JamVM

433 KB

530 KB

531 KB

547 KB

562 KB

564 KB

550 KB

556 KB

116 KB

159 KB

160 KB

164 KB

168 KB

168 KB

170 KB

166 KB

Figure 10: Space savings for lazy loading of classes
including bytecode instructions

Measured on the full GNU classpath library, which is
about 15 MB in size, we reduce the code footprint for a
simple hello world program to 159 KB, which is a reduction
of more than 99%. Subtracting 116 KB which are needed for
initialisation purpose of the virtual machine, we can execute
that program by loading only 43 KB.

Figure 10 illustrates the ratio between bytecode loaded by
SlimVM compared to memory loaded by JamVM. About
70% of the memory loaded by a common virtual machine
are not needed to execute that program. This pinpoints the
overhead of redundant code loaded by a common JVM.

5.3 Runtime Distribution of Code Requested
Figure 11 shows the runtime distribution of code requested

from the server for a hello world program. As illustrated,
we record a continuous rise of code transfers for execution of
the program. This is due to the fact that execution of that
program uses different bytecodes and therefore they have to
be requested and transferred from the server.

Figure 12 illustrates the runtime distribution of code re-
quested for the FloatingPoint benchmark of SPECjvm98.
This benchmark measures a number of floating point op-
erations running through a for loop for one million times.
Therefore code is only requested till the loop starts. Once
the loop is started, no code has to be requested from the
server because all bytecode transferred once, is stored on
the client.

program runtime
in milliseconds

KB requested

0

50

100

150

200

0 840420 210 630

Figure 11: Runtime distribution of code requested
of a HelloWorld program

0

50

100

150

200

program runtime
in milliseconds

KB requested

0 2250 45001125 3375

Figure 12: Runtime distribution of code requested
of the FloatingPointCheck benchmark of SPECjvm98

5.4 Network Transfers
In order to execute a Java program on the client we sup-

port a number of callback functions to request class infor-
mation in the new format, bytecode in form of basic blocks
and functions to request meta information. As mentioned
in Table 1 more than 1,500 callbacks are performed for the
execution of a hello world program. The number of 12,000
callbacks for execution of the Scimark 2 benchmark is due
to the fact that the native function arraycopy and the native
function sin are called over and over. Every time a native
function is invoked, the client calls back to the server in or-
der to resolve a method number to a method name in order
to call the correct native function.

Table 2 gives an overview of the transferred classes and
basic blocks. For the Linpack benchmark for example, we
analyse 39,000 basic blocks and 1,269 classes on the server
whereas only 1,225 basic blocks and 206 classes are trans-
ferred to the client.

5.5 Effect on Performance

139

callbacks
Empty main() method 1,145
HelloWorld program 1,533
Factorial program 1,537
Linpack 1,698
Scimark2 12,227
SpecJVM.FloatingPointCheck 1,907
JavaGrande.ArithBench 2,877
JavaGrande.LoopBench 1,966

Table 1: Number of callbacks to the server

classes BB
transf. transf.

Empty main() method 150 796
HelloWorld program 195 1,044
Factorial program 195 1,048
Linpack 198 1,166
Scimark2 206 1,225
SpecJVM.FloatingPointCheck 205 1,122
JavaGrande.ArithBench 204 1,218
JavaGrande.LoopBench 203 1,131

Table 2: Classes and basic blocks transferred

The initial claim of SlimVM is to reduce the memory and
code footprint for connected embedded Java virtual ma-
chines. We present an implementation with a simple exe-
cution mode where no optimization work for increasing the
execution speed is done. The bottleneck of SlimVM is the
network delay, which slows down the execution speed. Fur-
thermore, we do not implement opcode rewriting or any
other optimization which would make the presented virtual
machine competitive with a conventional JVM.

Figure 13 and Figure 14 show two benchmarks of Java-
Grande. The ArithBench calculates the number of additions,
multiplications and divisions that can be executed over a cer-
tain period of time which is displayed in thousands of adds,
multiplies and divides. The LoopBench measures the perfor-
mance of looping constructs which is denoted in thousand
iterations. As illustrated, SlimVM has a performance de-
crease in contrast to JamVM, which is furthermore caused
by basic block jumps. A conventional JVM is able to make
jumps for and back in the bytecode whereas SlimVM has to
perform a lookup every time a basic block is going to be exe-
cuted. In case the basic block has not been transferred to the
mobile device, it has to be requested from the server which
takes additional time which decreases the performance.

6. RELATED WORK
Many researchers have identified the importance of code

size reduction, dead code elimination and bytecode compres-
sion for ensuring Java’s success on embedded systems. Our
work does not only contribute to shrink the size of Java ap-
plications, but also to examine a more efficient intermediate
representation for transferring Java applications.

The standard means of packaging Java class files for dis-
tribution and storage is Sun’s JAR [22] file format, which
aggregates many Java class files as a single unit using the
well known zip [16] compression mechanism. JAR reduces

0

2.5

5.0

7.5

10.0

JamVM
SlimVM

Add:Int

Add:Long

Add:Float

Add:Double

Mult:In
t

Mult:L
ong

Mult:F
loat

Mult:D
ouble

Div:I
nt

Div:L
ong

Div:F
loat

Div:D
ouble

in thousand adds, multiplies, divides

Figure 13: ArithBench section of JavaGrande

0

2.5

5.0

7.5

10.0
JamVM
SlimVM

in thousand iterations

Loop:For Loop:ReverseFor Loop:While

Figure 14: LoopBench section of JavaGrande

the size of Java class files by almost 50% and can be executed
by any Java virtual machine.

Bradley et al. present a format called Jazz [2]. Similar
to JAR, Jazz bundles a number of class files together and
compresses them. They eliminate redundant constant pool
entries and combine the constant pools of all compressed
classes so that method names, signatures, integer constants
only appear once in the constant pool, no matter how many
classes make use of it. This reduces the data to 25% of its
original size.

Pugh presents a custom compressed format for collections
of Java class files called the wire-code format [18]. A com-
pressor transforms JAR files into the wire-code format and
reduces the size by sharing information across class files.
Furthermore, Pugh encodes method types as an array of
classes containing the return and argument types instead of
using strings. Finally, generic attributes are eliminated by
using additional flags in the access flags section. The wire-
code format is typically 50% - 80% smaller than the original
JAR file using the compression algorithm gzip [7].

Rayside et al. present an effective solution for the conflict-
ing requirements of code size reduction and execution per-

140

formance called compact Java binaries [19]. To reduce the
size of the constant pool they explicitly represent the pack-
age tree structure and the hierarchical organization of types
in Java. Due to this alteration it is possible to replace string
references to types with indices to the explicit representa-
tion. Furthermore they separate opcodes from operands ap-
plying different techniques like using the Huffman algorithm
in order to reduce the number of bits required to represent
the most frequent opcodes. Rayside et al. modified the con-
stantpool and the code attribute of class files in a way that
their evaluation shows a typical size reduction of 25% for
class files and 50% for JAR files.

Clausen et al. present in their work Java Bytecode Com-
pression for Low-End Embedded Systems [5] that factoriza-
tion of common Java bytecode instructions can reduce the
memory footprint, on average, to 85% of its original size
with a minimum time penalty.

Latendresse and Feeley [12] use canonical Huffman codes
to create an instruction set for a customized VM and present
an implementation of that machine that directly executes
this compact code. Their approach creates either new in-
structions in order to replace a sequence of instructions, or a
basic instruction with a new format for the operands. Their
compression factors highly depend on the original bytecode,
but typically vary between 30% and 60%.

Yang [26] reduces the overall memory footprint of the con-
stant pool to about 87% of their original size by performing
pre-resolution. Close to our work, he resolves all references
to other class definitions in the constant pool but does not
support dynamic binding.

Most former work on dead code elimination is focused on
improving the efficiency of a program. Butts [4] has shown
that approximately 3% to 16% dead or unreachable code
exists in programs.

Franz and Kistler present slim binaries [9], a compact
platform-independent program representation, which is de-
signed to be translated into binary code by an optimized
JIT compiler. Based on the fact that different parts of a
program are often similar to each other, these similarities
are exploited by using an predictive compression algorithm
which allows the encoding of recurrent subexpressions in a
program space efficiently. Their approach can reduce the
size of a complete application by factor of three.

Ernst et al. present a compressed executable called BRISC
[8], an interpretable VM code with about the same size as an
non-interpretable gzipped x86 program. They assume trans-
mission and memory as the two most important criteria for
the execution of a program. Unlike slim binaries which com-
presses full executables, they compress only code segments.
They scan the input program over and over and add fre-
quently occurred instructions to a dictionary and calculate
the program size reduction if the candidate were added to
the dictionary minus the number of bytes needed to repre-
sent the instruction pattern in the dictionary. Once a dic-
tionary is created, the dictionary followed by the modified
input program are written to the BRISC file. As the re-
sults show, BRISC is a good mobile program representation
choice which is competitive with gzip in size.

Titzer et al. present a dynamic VM where all code, data
and VM features are packed into a binary image [24]. Fea-
ture analysis detects unused code and data. Furthermore,
Java features are also subject to be removed from the VM
if the application does not use them. The memory footprint

for non-heap memory allocation can be reduced by up to
75%.

7. CONCLUSION AND OUTLOOK
We have presented a Java virtual machine for persistent

connected embedded devices. Off-target loading and veri-
fication allows us to leave all application and library class
files on the server. The client part of our VM requests only
information that is needed for executing a program.

Our results show that the transfer size of applications is
reduced by up to 70% in comparison to lazy class loading
with standard Java class files.

In comparison to previous work, we completely switch to
basic block granularity. No dispensable instruction is sent to
the mobile device at all. We are also supporting now Java
features such as the standard library, JNI, reflection, and
complete exception handling.

As far as future work is concerned, we are particularly
interested in adding dynamic code request analysis on the
server side. We want to keep track of all basic blocks that
are requested from the client and use this information to
calculate the likelihood of following basic blocks. Depending
on our heuristics and parameters like network-bandwidth or
memory constraints on the client side we can combine basic
blocks that are transfered to the client and therefore reduce
the number of requests and execution time.

We are also interested in exploring on-target verifiable
code compaction. Our current framework relies on a trusted
communication channel between the loader and the target
device. We believe it is possible to make our wire format ver-
ifiable by the target device without adding a significant meta
information overhead. This would relax the requirements on
the communication channel with the off-target loader.

Acknowledgment
This research effort is partially funded by the National Sci-
ence Foundation (NSF) under grant CNS-0615443. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the National
Science Foundation (NSF), or any other agency of the U.S.
Government.

8. REFERENCES
[1] D. N. Antonioli and M. Pilz. Analysis of the Java class

file format. Technical report, Department of Computer
Science, University of Zurich, 1998.

[2] Q. Bradley, R. N. Horspool, and J. Vitek. JAZZ: An
efficient compressed format for Java archive files. In
Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research, pages
294–302. IBM Press, 1998.

[3] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A benchmark suite for high
performance Java. Concurrency: Practice and
Experience, 12(6):375–388, 2000.

[4] J. A. Butts and G. Sohi. Dynamic dead-instruction
detection and elimination. In ASPLOS-X: Proceedings

141

of the 10th international conference on Architectural
support for programming languages and operating
systems, pages 199–210, New York, NY, USA, 2002.
ACM.

[5] L. R. Clausen, U. P. Schultz, C. Consel, and
G. Muller. Java bytecode compression for low-end
embedded systems. ACM Transactions on
Programming Languages and Systems, 22(3):471–489,
2000.

[6] M. Dahm. Byte code engineering with the BCEL API.
Technical Report B-17-98, Institut für Informatik,
2001.

[7] P. Deutsch. GZIP File Format Specification Version
4.3. http://www.ietf.org/rfc/rfc1952.txt.

[8] J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting,
and S. Lucco. Code compression. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 358–365.
ACM Press, 1997.

[9] M. Franz and T. Kistler. Slim binaries.
Communications of the ACM, 40(12):87–94, 1997.

[10] GNU Classpath, 2009.
http://www.gnu.org/software/classpath/.

[11] M. Jeckle. Linpack Benchmark – Java Version, 2004.
http://www.jeckle.de/freeStuff/jLinpack/.

[12] M. Latendresse and M. Feeley. Generation of fast
interpreters for Huffman compressed bytecode. In
Proceedings of the Workshop on Interpreters, Virtual
Machines, and Emulators, pages 32–40. ACM Press,
2003.

[13] S. Liang. The Java Native Interface – Programer’s
Guide and Specification. The Java Series.
Addison-Wesley, 1999.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Second Edition. The Java Series.
Addison-Wesley, 1999.

[15] R. Lougher. JamVM, 2009.
http://jamvm.sourceforge.net/.

[16] PKWARE. .ZIP File Format Specification, 1989.
http://pkware.com/documents/casestudies/
APPNOTE.TXT.

[17] R. Pozo and B. Miller. SciMark 2.0, 1999.
http://math.nist.gov/scimark2/.

[18] W. Pugh. Compressing Java class files. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 247–258.
ACM Press, 1999.

[19] D. Rayside, E. Mamas, and E. Hons. Compact Java
binaries for embedded systems. In Proceedings of the
Conference of the Centre for Advanced Studies on
Collaborative Research, pages 1–14. IBM Press, 1999.

[20] Standard Performance Evaluation Corporation. The
SPECjvm98 Benchmarks, 1998.
http://www.spec.org/jvm98/.

[21] Sun Microsystems, Inc. The K virtual machine (KVM)
white paper, 1999.
http://java.sun.com/products/cldc/wp/.

[22] Sun Microsystems, Inc. JAR File Specification, 2003.
http://java.sun.com/javase/6/docs/technotes/guides/
jar/jar.html.

[23] Sun Microsystems, Inc. Java ME at a Glance, 2009.
http://java.sun.com/javame/.

[24] B. L. Titzer, J. Auerbach, D. F. Bacon, and
J. Palsberg. The ExoVM system for automatic VM
and application reduction. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 352–362. ACM
press, 2007.

[25] G. Wagner, A. Gal, and M. Franz. SlimVM:
Optimistic partial program loading for connected
embedded Java virtual machines. In Proceedings of the
International Symposium on Principles and Practice
of Programming in Java, pages 117–126. ACM Press,
2008.

[26] Y.-S. Yang, M.-S. Jin, S.-I. Jun, and M.-S. Jung. A
study on an efficient pre-resolution method for
embedded java system. pages 20–24, July 2004.

142

