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Abstract

In several Java VMs, strings consist of two separate objects: metadata such as the string length are stored
in the actual string object, while the string characters are stored in a character array. This separation causes
an unnecessary overhead. Fach string method must access both objects, which leads to a bad cache behavior
and reduces the execution speed.

We propose to merge the character array with the string’s metadata object at run time. This results
in a new layout of strings with better cache performance, fewer field accesses, and less memory overhead.
We implemented this optimization for Sun Microsystems’ Java HotSpot™ VM, so that the optimization is
performed automatically at run time and requires no actions on the part of the programmer. The original
class String is transformed into the optimized version and the bytecodes of all methods that allocate string
objects are rewritten. All these transformations are performed by the Java HotSpot™ VM when a class is
loaded. Therefore, the time overhead of the transformations is negligible.

Benchmarks show an improved performance as well as a reduction of the memory usage. The performance
of the SPECjbb2005 benchmark increases by 8%, and the average used memory after a full garbage collection
is reduced by 19%. The peak performance of SPECjvm98 is improved by 8% on average, with a maximum
speedup of 62%.
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1. Introduction

Strings are one of the essential data structures used in nearly all programs. Therefore, string opti-
mizations have a large positive effect on many applications. Java supports string handling at the language
level [1]. However, all string operations are compiled to normal method calls of the classes String and
StringBuilder in the Java bytecodes [2].

To the best of our knowledge, strings in Sun Microsystem’s Java HotSpot™ VM, Oracle’s JRockit, and
IBM’s J9 use the object layout illustrated in Figure 1 (a). Every string is composed of two objects: metadata
such as the string length are stored in the actual string object, whereas the string characters are stored in a
separate character array. This allows several string objects to share the same character array. To increase
the opportunities for sharing the character array, string objects use the fields offset and count. These
fields store the string’s starting position within the character array and the string length, so that a string
does not need to use the full character array. This is beneficial for methods such as String.substring():
a new string object that references the same character array is allocated, and only the string’s starting
position and length are set accordingly. No characters must be copied.

If a string uses its whole character array, the field count is a duplication of the character array’s field
length. Furthermore, the field offset is an overhead that reduces the performance: when a string character
is accessed, offset is loaded to determine the start of the string within the array.
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Figure 1: Object layout of strings

Although string objects can share their character arrays, this is not the common case. We measured
the percentage of strings that do not use their full character array: 0.05% for the SPECjbb2005 [3] bench-
mark, 5% for the SPECjvm98 [4] benchmarks, 14% for the DaCapo [5] benchmarks, and 29% for the
SPECjvm2008 [6] benchmarks. However, a string also shares its character array when it is explicitly copied
using the constructor String(String original). Of all string allocations, 19% are explicit string copies for
the SPECjbb2005 benchmark and 4% for the SPECjvm98 benchmark. The DaCapo and the SPECjvm2008
benchmarks hardly allocate any explicit string copies.

Because of these results, we propose different string layouts as shown in Figure 1 (b) and (c). In the
first variant, we remove the field offset and merge the character array with the string object, which also
makes the fields count and value unnecessary. This precludes the sharing of character arrays between
string objects, but has several advantages such as the reduction of memory usage and the elimination of
field accesses. The second variant, described in Section 4.6, also removes the field hashcode to save another
four bytes per string object. The computed hash code is cached in the object header instead.

This paper is an extended version of an earlier conference paper [7]. It contributes the following:

e We present two string optimization variants that reduce the memory usage and increase the perfor-
mance. Our approach requires neither actions on the part of the programmer nor any changes outside
the Java VM.

e We present details of the integration into both the client and the server compiler of the Java HotSpot™

VM.

e We discuss compatibility issues of our optimization with Java-specific features such as the Java Native
Interface (JNI) and reflection. Although our prototype implementation does not yet fulfill the Java
specification completely, it is capable of executing all Java applications and benchmarks we tried.

e We evaluate the impact of our optimization on the number of allocated bytes and the performance of
the SPECjbb2005, SPECjvm98, SPECjvm2008, and DaCapo benchmarks.

The paper is organized as follows: Section 2 gives a short overview of the relevant subsystems in the
Java HotSpot™ VM and illustrates where changes were necessary. Section 3 discusses the advantages of
our optimization. Section 4 describes the key parts of our implementation, i.e., bytecode transformation
and string allocation. Section 5 presents the benchmark results. Section 6 deals with related work, and
Section 7 concludes the paper.



2. System Overview

We build on an early access version of Sun Microsystems’ Java HotSpot™ VM that is part of the
upcoming JDK 7 [8]. The VM is available for multiple architectures, however our string optimization is
currently only implemented for the TA-32 architecture because platform-dependent code is necessary within
the interpreter and the just-in-time (JIT) compilers.
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Figure 2: System overview

Figure 2 illustrates some of the subsystems necessary for the execution of bytecodes. When a class
is loaded by the class loader, the corresponding class file is parsed and verified, run-time data structures
such as the constant pool and the method objects are built, and finally the interpreter starts executing the
bytecodes. For every method, the number of invocations is counted in order to detect so-called hotspots.
When an invocation counter exceeds a certain threshold, the JIT compiler compiles the method’s bytecodes
to optimized machine code. There are two different JIT compilers for the Java HotSpot™ VM:

e The client compiler is optimized for compilation speed and refrains from time consuming optimiza-
tions [9, 10]. With this strategy, the application startup time is low while the generated machine code
is still reasonably well optimized. The compilation of a method is performed in three phases: high-level
intermediate representation (HIR) generation, low-level intermediate representation (LIR) generation,
and code generation.

The HIR represents the control flow graph. Since Java 6, it is in static single assignment (SSA)
form [11] and suitable for global optimizations. For generating the HIR, two passes over the bytecodes
are necessary. The first pass determines and creates the basic blocks for the control flow graph. The
second pass uses abstract interpretation of the bytecodes to link the basic blocks and to fill them with
instructions. Several optimizations like constant folding, null-check elimination, and method inlining
are performed during and after the generation of the HIR. Because the HIR is in SSA form, these
optimizations are fast and can be applied easily.

In the next phase, the LIR is created from the optimized HIR. The LIR is more suitable for register
allocation and code generation because it is similar to machine code. However, the LIR is still mainly
platform independent. Instead of physical machine registers, virtual registers are used for nearly all
instructions. Platform-dependent parts, like the usage of specific machine registers for some instruc-
tions, can be modeled directly in the LIR. This simplifies the code generation. Linear scan register
allocation [12] is used to map all virtual registers to physical ones.

Code generation finishes the compilation of a method by translating each LIR instruction to the
platform-dependent instructions. Uncommon cases like throwing an exception or invoking the garbage
collector are handled as separate cases and are emitted at the method’s end. In addition to the machine
code, other meta data required for the execution is generated.

e The server compiler makes use of more sophisticated optimizations to produce better code [13]. It
is designed for long-running server applications where the initial compilation time is irrelevant, and
where a high peak performance is essential. Like a traditional compiler, the server compiler uses the
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following phases for compilation: parsing, platform-independent optimization, instruction selection,
global code motion and scheduling, register allocation, peephole optimization, and code generation.

The parser creates the compiler’s intermediate representation (IR) from the bytecodes and applies some
optimizations like constant folding. Platform-independent optimizations like null-check elimination
and dead-code removal are applied to the IR. The instruction selection phase maps the platform-
independent IR to platform-dependent instructions. These are reordered to optimize their sequence.
This avoids dependencies between the instructions and increases the performance. Then, physical
machine registers are assigned to each instruction. A peephole optimization analyzes the code in small
pieces and merges or replaces instructions. The last step generates the machine code and additional
information required for the execution.

Within the Java HotSpot™ VM, certain methods can be declared as intrinsic. When such a method
is compiled or inlined, a handcrafted piece of machine code is used as the compilation result. This allows
optimizing specific methods manually.

Every Java object has a header of two machine words, i.e., 8 bytes on 32-bit architectures and 16 bytes
on 64-bit architectures [14]. Figure 3 shows this object layout for a character array. The first machine word,
the so called mark word, stores the identity hash code and the object’s synchronization status. The identity
hash code is a random value that does not depend on the object’s content, and is calculated via the method
System.identityHashCode (). Caching is necessary because its value must not change during the object’s
lifetime. On 32-bit architectures, the identity hash code is truncated to 25 bits. On 64-bit architectures,
the mark word is large enough to hold the identity hash code without truncation. The identity hash code is
preferably unique for each object but it is not guaranteed to be so.

The second header word stores a pointer to the class descriptor object that is allocated when a class is
loaded. The class descriptor holds the metadata and the method table of the class. Then, the object data
follows, i.e., the array length and the characters in case of a character array.

charf]
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Figure 3: Java object header on 32-bit architectures

As shown in Figure 2, we add a rewriter component to the basic execution system. After the class loader
has finished loading a class, the rewriter checks if a method allocates string objects. If so, the method
bytecodes are transformed. This is done only once per class and adds a negligible overhead to the execution
time. Additionally, the string class itself is transformed manually. Several other subsystems of the VM are
affected by our string optimization because String is a well-known class that is directly used within the
VM. Nevertheless, we tried to minimize the number of changes.

3. Advantages of the Optimization

Although character array sharing between multiple string objects is no longer possible for optimized
strings, the optimization has several other advantages:

e Elimination of field accesses: By removing the fields offset, count, and value, field access are saved
in almost every string operation.

e Reduced memory usage: Original string objects have a minimum size of 36 bytes. With our optimiza-
tion, the minimum size is 12 or 16 bytes, depending on the removal of the field hashcode. Saving up
4



to 24 bytes per string object results in the reduced memory usage shown in Figure 4, which depends
on the string length. For example, for strings of length 10 our optimized string handling saves 37% of
string memory, or 44% if also the field hashcode is eliminated. The figure also contains the average
string lengths for the different benchmark suites. Because the memory usage is reduced, fewer garbage
collections are necessary.
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Figure 4: Reduction of memory usage for optimized string objects (higher is better)

Faster garbage collection: An original string is composed of a string object and a character array, both
of which must be processed by the garbage collector. The optimized string is a single object and thus
reduces the garbage collection time.

Better cache behavior: The two parts of an original string can be spread across the heap, but both
parts are always accessed together, which results in a bad cache behavior. The optimized string is one
unit that possibly fits into a single cache line.

No indirection overhead: Because of merging the string object with the character array, the characters
can be addressed directly and no dereferencing of the character array pointer is necessary.

No useless bounds checks: Original strings perform two bounds checks when they are accessed: an
explicit bounds check is implemented in the class String because it is a convention to throw a
StringIndexOut0fBoundsException if it fails. A second implicit bounds check is performed when
the character array is accessed. This duplication no longer exists for optimized strings.

Faster allocation: When an original string object and its character array are allocated, both are ini-
tialized with default values. Because of a changed allocation of optimized strings, the string characters
no longer need to be initialized with default values.

No unused characters: Original string objects may use a far too large character array because of
character array sharing. The garbage collector is not aware of this and cannot free any unnecessary
memory because it can only determine that the character array is still referenced by a string object.
Optimized strings use exactly the minimum necessary amount of memory for storing the characters.

4. Implementation

Our implementation of the optimization uses three new bytecodes for allocating and accessing optimized

string objects. These bytecodes are only necessary within the class String because the characters of a string
are declared as private and cannot be accessed directly from outside.

To introduce the new bytecodes, it is necessary to transform the object code of the class String. Although

this could be done at run time, it would be complicated. Therefore, we modify the Java compiler (javac)
and use it to compile the class String. This results in an optimized class, which is created once, and is used

5



by the VM if the string optimization is enabled. The modified version of javac is not used for compiling any
other source code.

Additionally, methods that allocate string objects must be transformed. This must be done at run time
because it affects application classes whose source code is not available. The transformation details are
explained in Section 4.5.

Introducing new bytecodes for optimized operations inside the VM is a common pattern. These bytecodes
use numbers that are unused according to the specification [2]. Because it is only necessary to handle the
new bytecode instructions in the interpreter and to support them in the JIT compilers, the impact on the
overall VM structure is low.

4.1. Remowving the Field Of fset

To remove the field offset of strings, we modify the Java source code of the class String. The following
three cases must be considered:

e In most cases, it is possible to just remove the accesses to the field offset, or to replace them with
the constant 0. An example for this case is the method String.charAt().

e Sometimes, the field offset is used to implement an optimization such as the sharing of character
arrays between string objects. This kind of optimization is no longer possible and it is necessary to
create a copy of the characters leading to a certain overhead. An example for this is the method
String.substring().

e In rare cases, the string-internal character array is passed to a helper method of another class. The
optimized string characters cannot be passed as a character array to a method anymore. It would be
necessary to pass the string object itself. To make this possible, the receiving method would have to
be overloaded to allow a string object instead of a character array as an argument. We decided to
keep the number of changes to a minimum and did not change or add any methods outside of the class
String. Instead, we copy the string characters to a temporary character array which is then passed
as an argument to such methods. This is expensive, but could be easily optimized in the future.

In addition to the Java source code of the class String, some parts of the Java HotSpot™ VM must be
modified because String is a well-known class within the VM. The VM allocates strings for its internal data
structures and provides methods to access their content. Also some intrinsic methods use the field offset
in their handcrafted piece of machine code. The same three cases shown above apply also to the changes
inside the VM.

4.2. Character Access

Two new bytecodes are introduced for accessing the characters of an optimized string:

e scload: This bytecode loads a string character and is similar to the bytecode caload used for loading
a character from a character array. scload expects two operands on the stack: a reference to the
string object and the index of the accessed character.

e scstore: This bytecode stores a string character and is similar to the bytecode castore used for
storing a character in a character array. Compared to the scload bytecode, one additional operand is
expected on the stack: the character which is to be stored at the specified index of the given string.

Although these bytecodes are similar to the character array access bytecodes, they are still necessary for
two reasons:

e As illustrated in Figure 1, the offset of the first character of an optimized string is different from the
offset of the first element of a character array. Furthermore, the offset depends on the optimization
level: it is 16 if the field hashcode is preserved, and 12 if it is removed.
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e Each time a character array is indexed, a bounds check is performed. If the index is out of the valid
bounds, an ArrayIndexOutO0fBoundsException is thrown. Optimized string objects also need bounds
checks, but within the class String it is a convention to throw a StringIndexOutO0fBoundsException
if the check fails.

Introducing the new bytecodes reduces the size of methods in the class String because many field loads
are no longer necessary. For example, Figure 5 shows the bytecodes of the method String.charAt (), whose
size is reduced from 33 to 4 bytes. This speeds up the execution and reduces the overall size of the class
String by approximately 6%.

21: aload this
22: getfield value

25: iload index 2: iigzj E:;zx
26: aload this T 2: scload
27: getfield offset 3: ireturn
30: iadd :
31: caload
32: ireturn
(a) original (b) optimized

Figure 5: Bytecodes of the method String.charAt()

4.8. String Allocation

Allocating optimized string objects is more complicated than accessing their characters. The class String
currently has 16 constructors. All must be preserved to ensure that no existing program breaks. In Java,
the allocation of an object is separated from its initialization, i.e., they are performed by two different
bytecodes. For allocating an object, its size must be known. After the allocation, the constructor is invoked
to perform the initialization. Arbitrary code can be placed between these two bytecodes, as long as the yet
uninitialized object is not accessed. To allocate an optimized string, the number of its characters must be
known. However, the number is usually calculated during the execution of the constructor and is therefore
not available to the object allocation.

We solve this problem by delaying the string allocation to the point of the initialization. The string
constructors are replaced with static factory methods that combine the object allocation and initialization.
These factory methods have the same arguments as the constructors. They calculate the length of the
resulting string, allocate the optimized string object, and initialize it.

Figure 6 shows the bytecodes available for allocating objects and arrays. For the allocation of an original
string object, the bytecode new is used. This bytecode can only be used if an object with a statically known
size is to be allocated, which applies to all Java objects except arrays. The only operand is an index to a
class in the constant pool. When the bytecode is executed, the index is used to fetch a class descriptor that
contains the object size. Knowing the size, an object of this class can be allocated.

For allocating arrays, the newarray bytecode is used. The array element type is directly encoded in the
bytecode and the array length is expected on the operand stack. With the length and the array element
type, the total array size is calculated and the allocation is performed.

Optimized string objects have a variable length like arrays, but also fields like objects, so neither of the
two previous bytecodes can be used. Therefore, we introduce the bytecode newstring that is similar to
the bytecode newarray and expects the string length on the stack. A bytecode operand, like the element
type, is not necessary because the VM knows that a string object only contains characters. Furthermore,
the number of fields of a string is fixed and statically known. With this knowledge, the total string size is
calculated and the allocation is performed. This bytecode is exclusively used to implement the allocation of
optimized string objects within the factory methods.
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Figure 6: Allocation bytecodes

4.4. Generating the Optimized Class String

The Java programming language compiler (javac) is modified to create the class file for the optimized
class String. The compilation result is packed into a jar file and prepended to the VM’s bootstrap classpath
to override the default implementation of the class String. This modified version of javac is only used to
create the optimized string class and is not used for compiling any other Java source code.

Without the modified version of javac, the original class String would have to be transformed to the
optimized version at run time. This is less flexible and harder to implement. Due to the modified version
of javac, it is also possible to provide Java-like source code for the optimized class String. This has the
advantage that the optimized class can be read and modified more easily. However, the semantics of some
statements are adjusted to express the newly introduced bytecodes. The field value of the class String,
which references the character array for original strings, still exists in the Java source code of the optimized
class String. It represents the string characters that are now embedded in the string object. This field
looks and is used like a character array, but actually represents something that cannot be fully expressed in
the Java language.

All existing constructors are replaced by the described factory methods. A synthetic constructor is added
that has the string length as its only parameter and is used to model the bytecode newstring in the Java
source code. The modified version of javac uses two additional code generation patterns for generating the
optimized class file:

o If the string’s field value is accessed, the bytecodes getfield or putfield are omitted. These byte-
codes would normally use a string reference that is placed on top of the operand stack. Because they
are omitted, the string reference is not consumed and can be used by the character access bytecodes
scload or scstore that are emitted instead of caload or castore.

e The synthetic constructor, which has the string length as its only parameter, is directly mapped to the
bytecode newstring. The string length is pushed onto the operand stack like any other constructor
parameter. However, the bytecode newstring is emitted instead of the constructor invocation.

The result of compiling the method String.charAt() with the modified version of javac is shown in
Figure 5. The resulting bytecodes for a compilation of a factory method are shown in Figure 7. The synthetic
string constructor, used within this method, is compiled to the new string allocation bytecode newstring
by the modified javac.

4.5. Bytecode Rewriting
The rewriter component transforms the original, unoptimized bytecodes to the optimized ones. This is

necessary for all methods that allocate string objects. Whenever a class is loaded, the rewriter checks if a
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aload val
arraylength
istore len
iload len
newstring
astore string
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private static String allocate(char[] val) {
int len = val.length;
String string = new String(len); > °
stringcopy(val, @, string, @, len); iconst @
return string; aload string
} 9: iconst ©
10: iload len
11: invokestatic stringcopy
14: aload string
15: areturn
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Figure 7: Factory method for string allocation

method of this class allocates string objects. If this is the case, the rewriter transforms the bytecodes in
three steps, as illustrated in Figure 8:

1. The allocation of the string object, i.e., the bytecode new, is removed by replacing it with nop bytecodes.
The bytecode new would push a string reference on the stack, which does not happen anymore because
of the removal.

2. The bytecode rewriting process is complicated by stack management instructions like dup or pop that
would use the no longer existing string reference. Each of these management instructions must be
modified or removed. Furthermore, some of the subsequent bytecodes might have to be rearranged.
Our current implementation is prototypical in that it handles only the most common stack management
instructions. Yet, it is complete enough for running nearly all Java programs including the various
benchmarks presented in Section 5. Only special bytecode-optimized programs which make use of
more sophisticated but rarely used stack management instructions like dup_x1 might cause problems
and are currently not supported, i.e., they are reported as errors.

3. In the last step of the rewriting process, the constructor invocation is replaced with the invocation of the
corresponding factory method. Because the factory method has the same arguments as the constructor,
no change to the operand stack handling is necessary. This rewriting step can be implemented in two
different ways:

e The constant pool index of the invoked method could be rewritten. This would make it necessary
to add the name of the factory method to the constant pool.

e The method resolution within the VM could be modified. Each time a string constructor must
be resolved, the factory method is returned instead. This also works for applications that use the
Java Native Interface (JNI) and could not be rewritten otherwise. Therefore, we implemented
this approach.

Figure 9 shows a short example for bytecode rewriting. The simple Java method, presented in Fig-
ure 9 (a), allocates and returns a string object that is initialized using a character array. The bytecodes of
the unoptimized version are shown in Figure 9 (b). The original string object is allocated with the bytecode
new. In the next step, the string reference is duplicated on the operand stack. This is necessary because
the reference is needed both for the invocation of the constructor and the method return. After that, the
constructor’s parameter is pushed onto the operand stack and the constructor is invoked. It computes the
length of the string’s character array, allocates it, and initializes it with the characters of the array ch.

The rewriter component transforms the original bytecodes to the optimized version shown in Figure 9 (c).
The transformation happens whenever a method is loaded that allocates string objects. The string allocation
and the subsequent reference duplication are replaced with no operation (nop) bytecodes. We do not remove
these bytecodes completely because this would change the bytecode indices and thus would have side effects
on all jumps within the method. If the method is compiled, the nop bytecodes are ignored anyway.
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public static String createString() {

char[] ch = ...;
void rewriteMethod(Method method) { return new String(ch);
foreach(Bytecode code within method) { }
switch(code) {

case new: (a) Java sourcecode

if(createsString) {
1 WithN 5
} replacenithNop(); 10: new java.lang.String
13: dup

break;

case dup: 14: aload ch

15: invokespecial constructor

if(isBetweenNewStringAndStringInit) { 18: areturn

replaceWithNop();
} (b) original bytecode
break;
case invokespecial:

if(invokesStringConstructor) { ié: hop

replaceWithInvokeFactoryMethod(); 13: nop
g ke 14: aload ch
reax; 15: invokestatic factory method
} } 18: areturn
} (c) optimized bytecode
Figure 8: Bytecode rewriting heuristic Figure 9: Example for string allocation

4.6. Remowing the Field Hashcode

When the method String.hashCode () is invoked on a string object for the first time, the hash code is
computed and cached in the field hashcode to avoid multiple computations. The hash code is computed
from the string characters, i.e., two string objects with the same contents have the same hash code. The
field hashcode requires four bytes per string object, so its removal is beneficial. However, recomputing the
hash code each time it is accessed would slow down many applications.

We use the part of the mark word in the object header where normally the identity hash code is stored
to cache the string hash code. As it is not guaranteed that the identity hash code is unique for every object,
it should not have any side effects if the identity hash code of strings is equal to the string hash code. As
long as String.hashCode() is executed by the interpreter, the hash code is not cached and is calculated
upon each method invocation. This is necessary because the Java object header cannot be accessed via a
bytecode. When the method String.hashCode() is passed to the JIT compiler, it is not compiled but an
intrinsic method is used that calculates the hash code once and caches its value in the object header. The
actual intrinsic method is written in assembler and performs the steps shown in Figure 10. If the object is
unlocked, its mark word is accessed to extract the possibly cached hash code. If the object is either locked
or its hash code was not cached yet, we compute the hash code. This computed hash code is then cached
in the mark word if the object is unlocked. The hash code is not cached if the object is locked because the
mark word points to a locking data structure when this code path is taken. This is a rare case because
strings are normally not used for synchronization.

As mentioned before, the hash code is truncated to 25 bits on 32-bit architectures when it is stored in the
mark word. Although this should not have a significant negative effect, the hash code algorithm is specified
in the documentation of the class String. Therefore, this optimization might violate the specification on
32-bit architectures. Because of this, the next section evaluates our optimization with and without the
elimination of the field hashcode. On 64-bit architectures, this optimization complies with the specification
because the object header is large enough to hold the hash code without truncation.

4.7. Further Adjustments

Some existing optimizations are voided by the new optimized class String. The string characters can
no longer be copied using the method System.arraycopy() because they are not stored as a real array
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int hashCode() {
int hashcode = 90;

if(this.isUnlocked()) {
hashcode = extractHashCode(this.markWord);

}

if(hashcode == @) {
hashcode = computeHashCode(this);

if(this.Unlocked()) {
cacheHashCode(this, hashcode);

}
}

return hashcode;

Figure 10: String.hashCode() intrinsic method

anymore. System.arraycopy() is faster than a loop in Java code because some bounds and type checks
can be omitted. Therefore, we use specialized versions of System.arraycopy() for optimized string objects.
These methods copy a range of characters between two strings or between a string and a character array.
In the JIT compiler, these new methods are handled as intrinsic methods and share nearly the whole code
with the method System.arraycopy().

4.8. Implementation Details

For our optimization we needed to modify the size computation of objects. During a garbage collection,
the garbage collector iterates over all objects on the heap. For this iteration, the size of each object on the
heap must be computed. Because a large heap offers enough space for millions of objects, the necessary
time for computing an object’s size must be as low as possible. The simplest implementation of the object
size computation would call a virtual method of the class descriptor object. However, this is too slow for a
large number of invocations because calling a virtual method adds an additional indirection step.

The Java HotSpot™ VM implements a fast variant for the size computation of objects, which uses the
so-called layout helper field of class descriptor objects. This field only stores a useful value for objects that
are directly allocated from Java source code, i.e., Java class instances and arrays, as those are the majority
on the heap. For all other VM internal objects, a virtual method of the class descriptor object is called.
The layout helper of Java class instances contains the statically known object size. For arrays, the size is
computed using the element type and the number of elements.

The string optimization causes some problems with this existing infrastructure because optimized strings
are Java class instances that do not have a statically known size. Therefore, distinguishing between Java class
instances, arrays and other objects is no longer sufficient. To support a fast size computation for optimized
string objects, we modify the layout helper to distinguish between objects with a fixed size, objects with a
computed size, and other objects. We also provide the possibility to use the fast size computation for VM
internal objects. The changes of the layout helper require several modifications of other parts of the Java
HotSpot™ VM because the layout helper is also used in platform-dependent code for the allocation of Java
class instances and arrays.

The implementation of our optimization within the interpreter and the JIT compilers mainly involves
the following changes:

o Changes to the VM infrastructure: Elimination of the string field offset and the changes of the layout
helper require modifications of the Java HotSpot™ VM infrastructure including platform-dependent
code. Several parts of these changes affect code that is shared between the interpreter and the JIT
compilers.
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o Implementing the new bytecodes: The newly introduced bytecodes are similar to existing bytecodes.
So, we reused as much from the existing infrastructure as possible. However, the interpreter and the
two JIT compilers all had to be changed separately as they use different approaches and different code
bases. The following list exemplarily summarizes the necessary implementation steps for the client
compiler:

— The allocation of optimized string objects requires one new HIR instruction. For accessing the
characters within an optimized string, it is sufficient to extend the HIR instruction used for
accessing a character array. This has the advantage that existing optimizations, such as bounds-
check elimination, are automatically applied to optimized strings.

— For removing the field hashcode, one LIR instruction was introduced that represents the intrinsic
method String.hashCode(). All other required LIR functionality is mapped to sequences of
already existing instructions.

4.9. Compatibility Issues

Although the implementation of the string optimization is complete enough for running nearly all Java
programs, it has some remaining compatibility issues with the Java specification. If this optimization is to
be integrated in a product version of the Java HotSpot™ VM, the following issues must be addressed:

o Reflection: The optimization replaces the String constructors with factory methods. Therefore,
no constructors can be accessed via reflection. This could be solved by returning the appropriate
factory method whenever a constructor is accessed via reflection. Some additional changes in the Java
HotSpot™ VM would be required for that. Existing Java code may also access the fields offset,
count, hashcode, and value of the class String via reflection. These fields should not cause severe
problems as they are all declared as private. Code that accesses private fields via reflection should be
aware of possible implementation changes.

e FEzxception handling: Exceptions that occur during the allocation or initialization of optimized strings
are thrown in the context of the factory methods. However, the programmer expects the exceptions
to be thrown in the constructor as the factory methods are only used internally and are not visible to
the programmer.

e JNI: Nearly all compatibility issues with the JNI were solved by modifying the method resolution.
However, the JNI provides the method AllocObject that allocates an object without invoking its
constructor. For optimized string objects, this is no longer possible because the factory methods
combine the object allocation and initialization. Therefore, this method would have to execute a code
similar to the bytecode newstring.

e Bytecode rewriting: The rewriting heuristic implemented for the prototype must be extended to fully
comply with the Java specification. It is necessary to parse the bytecodes and to build a representation
where stack management instructions such as dup_x1 can be safely reorganized or deleted.

5. Evaluation

Our string optimization is integrated into Sun Microsystems’ Java HotSpot™ VM, using the early
access version b24 of the upcoming JDK 7. The benchmarking system has the following configuration: an
Intel Core2 Quad processor with 4 cores running at 2.4 GHz, 2 * 2 MB L2 cache, 2 GB main memory,
and with Windows XP Professional as the operating system. For measuring the performance and the
number of allocated bytes, we use the benchmarks SPECjvm98 [4], SPECjvm2008 [6], SPECjbb2005 [3],
and DaCapo [5]. We present the results of four different configurations:

e Our baseline configuration is the unmodified Java 7 build b24.
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e In the “optimized” configuration, all optimizations described in this paper except the removal of the
field hashcode are performed.

e Our optimization has two benefits: a reduced memory consumption because of the smaller string
objects, and a reduced number of memory accesses because of the eliminated fields. The “overhead”
configuration increases the size of the optimized string objects artificially to the size of the original
strings by adding a padding of 20 bytes per string. If a benchmark does not invoke any methods
that use character array sharing for the original strings, this configuration allocates exactly the same
number of bytes as the baseline. Any additional memory overhead, e.g., in Figure 16, is a result of
the missing character array sharing. Therefore, this configuration indicates how frequently character
array sharing is used in a benchmark. The performance loss in comparision with the “optimized”
configuration shows the impact of the reduced memory usage on the performance.

e The “optimized hash field” configuration uses all optimizations described in this paper including the
optimization of the field hashcode. We use a 32-bit architecture for benchmarking and therefore the
hash code is truncated to 25 bits. Because the SPECjbb2005 benchmark compares the hash code of a
string object to a hardcoded value during the startup, the benchmark needed to be modified slightly.

5.1. SPECjbb2005

The SPECjbb2005 benchmark represents a client/server business application. All operations are per-
formed on a database that is held in the physical memory. With an increasing number of warehouses, the
size of the database increases and less memory is available for executing transactions on the warehouses.
Therefore, the number of garbage collections increases, which has a negative impact on the performance.

The benchmark result is the total throughput in so called SPECjbb2005 business operations per sec-
ond (bops). This metric is calculated from the total number of executed transactions on the database. In
this benchmark, a high number of string operations is performed. Unless stated otherwise, a heap size of
1200 MB is used for all measurements.

Figure 11 illustrates the SPECjbb2005 performance and the average amount of used memory after a
full garbage collection. The used memory after a full garbage collection serves as an approximation of the
application’s minimum heap size. Both numbers are significantly improved by our string optimization.
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Figure 11: SPECjbb2005: performance and memory Figure 12: SPECjbb2005: memory usage for a fixed
usage number of transactions (lower is better)

The SPECjbb2005 benchmark always runs 240 seconds for a specific number of warehouses. Therefore,
the total number of allocated bytes depends on the performance, i.e., on how many transactions can be run
in this time frame. To measure the number of allocated bytes independently of the performance, we used
a slightly modified version of the SPECjbb2005 benchmark that executes a fixed number of transactions
on four warehouses. For the optimized configurations, the number of allocated bytes is reduced as shown
in Figure 12. Furthermore, the optimizations also reduce the time necessary for garbage collection. The
configuration “overhead” allocates more bytes than the baseline because original strings use character array
sharing for explicit string copying.
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Figure 14: SPECjbb2005: garbage collection time for various numbers of warehouses (lower is better)

To further evaluate the impact of the reduced memory consumption, we executed each configuration
with a heap size of 512 MB, up to the number of warehouses where an OutOfMemoryException is thrown.
Figure 13 shows the performance for various numbers of warehouses. The performance increases up to
4 warehouses because each warehouse uses its own thread and the benchmarking system has 4 cores. With a
higher number of warehouses, the thread overhead and the memory usage increases, so that the performance
decreases. Because of the reduction of memory usage, it is possible to execute the SPECjbb2005 benchmark
with 24 instead of 19 warehouses.

Figure 14 shows the overall time spent in the garbage collector for runs with various numbers of ware-
houses. The configurations that reduce the memory usage also spend less time in the garbage collector. The
memory-resident database uses a smaller part of the heap and therefore more memory is available for the
actual execution, which then needs fewer garbage collections. There is a clear correlation between Figure 13
and Figure 14: the performance decreases as the time for garbage collection increases.

5.2. DaCapo

The DaCapo benchmark suite consists of eleven object-oriented applications. We used the release version
2006-10-MR2 and executed each benchmark five times, so that the execution time converges because all
relevant methods have been compiled by then. We present the slowest and the fastest run for each benchmark.
The slowest run, which is always the first one in our case, shows the startup performance of the JVM, while
the fastest run shows the achievable peak performance (all relevant methods compiled). Furthermore, the
geometric mean of all results is presented. A heap size of 256 MB is used for all benchmarks.

The performance for the benchmarks in the DaCapo suite is presented in Figure 15. In this diagram,
the slowest and the fastest runs for each benchmark are shown on top of each other. Both runs are shown
relative to the fastest run of the baseline. The light bars refer to the slowest runs, the dark bars to the
fastest runs.
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Figure 16: DaCapo: number of allocated bytes (lower is better)

Both the fastest and the slowest runs are improved for nearly all benchmarks. Especially the chart
benchmark, which is string-intensive, profits greatly from the string optimization. Other benchmarks with
a considerable speedup are antlr, hsqldb, and jython. Benchmarks that use only few strings show neither a
speedup nor a slowdown. For most benchmarks the configuration “overhead” shows a similar performance
as the configuration “optimized”. Therefore, the reduction of the memory usage has little positive effect on
the performance of these benchmarks.

The number of allocated bytes for each benchmark is presented in Figure 16. Again, the chart benchmark
profits greatly from the optimization and allocates less memory. This benchmark also shows the impact
of the elimination of the field hashcode. While the number of allocated bytes is reduced for most string-
intensive benchmarks, the jython benchmark shows a contrary result. More memory must be allocated for
this benchmark because jython uses character array sharing, which is no longer possible with optimized
string objects. Therefore, new string objects are allocated and the characters must be copied. Nevertheless,
the performance still shows a speedup. The configuration “overhead” allocates more memory than the
baseline for most benchmarks. This indicates that a significant amount of character array sharing is used.

5.83. SPECjum98

The SPECjvm98 benchmark suite contains seven benchmarks derived from typical client applications.
Similar to the DaCapo benchmark suite, we executed each benchmark until the execution time converged.
We report the slowest and the fastest run for the string-intensive benchmarks db, jack, and javac (no
significant difference to the baseline is measured for the other four benchmarks), as well as the geometric
mean of all seven benchmarks. A heap size of 64 MB is used for all benchmarks.

Figure 17 illustrates the results of the SPECjvm98 benchmark suite. In this diagram, the slowest and
the fastest run for each benchmark are shown on top of each other. Both runs are shown relative to the
fastest run of the baseline and the light bars refer to the slowest runs, the dark bars to the fastest runs.
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Figure 17: SPECjvm98: performance and allocated bytes for string-intensive benchmarks

The db benchmark shows an exceptionally high speedup. Other than the name suggests, this benchmark
spends most time sorting a list of strings and is therefore the ideal target for our optimization. The number
of allocated bytes decreases only slightly, so the high speedup results from the removal of the field accesses
and the better cache behavior. For all benchmarks the performance of the slowest run as well as of the
fastest run is greater or equal to the baseline. Furthermore, the number of allocated bytes is smaller or
equal to the baseline for all benchmarks. This means that the performance and the number of allocated
bytes are optimized without any negative effect on any of the benchmarks. The largest reduction of the
number of allocated bytes is measured for the jack benchmark.

5.4. SPECjuym2008

The SPECjvm2008 benchmark suite contains ten benchmarks, some of them consisting of several sub-
benchmarks. It is designed to replace the SPECjvm98 benchmark suite. The sub-benchmarks com-
piler.compiler and compiler.sunflow compile Java source code to bytecode. Compiling against the optimized
class String would cause compilation errors whenever a string constructor is invoked explicitly. This is
a limitation of our current implementation (see Section 4.9). To avoid the compilation errors, we added
the original source code of the class String to the compilation set of both sub-benchmarks. This modified
compilation set is used for all benchmark runs.

Many of the benchmarks perform only numerical computations without using strings. For this reason,
we omitted two larger groups of sub-benchmarks: the three crypto benchmarks, and the nine scimark
benchmarks. All of these show the same performance in all configurations. A heap size of 512 MB is used
for all benchmarks. Figure 18 shows the results of the SPECjvm2008 benchmark suite. Mainly the two xml
sub-benchmarks, which are string-intensive, profit from the optimization.
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Figure 18: SPECjvm2008: performance results (higher is better)
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Similar to the SPECjbb2005 benchmark, the SPECjvm2008 benchmark suite runs every sub-benchmark
for 240 seconds. We use the SPECjvm2008 fixed size workload Lagom to ensure that the number of allocated
bytes does not depend on the performance. As shown in Figure 19, the number of allocated bytes is reduced
for the string-intensive benchmarks. The configuration “overhead” allocates more bytes than the baseline,
which indicates that original strings profit from character array sharing. Mainly the benchmarks serial,
xml.transform and xml.validation profit from the optimization and allocate less memory.

5.5. Server Compiler

To evaluate our optimization with the server compiler, we use the same four benchmark suites. As in the
previous sections, we omit some benchmarks from SPECjvm98 and SPECjvm2008 that do not use strings.
Our prototype implementation for the server compiler is only optimized for the case where a string object
has the same memory layout as a character array, i.e., the configuration optimized hash field. This allowed
us to re-use several optimized copying and access methods. Figure 20 shows the performance results when
our optimization is applied to the server compiler.
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Figure 20: Server compiler: performance of SPECjbb2005, SPECjvm98, DaCapo, and SPECjvm2008 (higher is better)

Many benchmarks profit significantly from our optimization, especially the SPECjvm98 benchmarks db
and jack, the DaCapo benchmarks antlr, chart, and xalan, as well as the SPECjvm2008 xml benchmarks.
In general, the speedup for the server compiler is smaller than the speedup for the client compiler. There
are several reasons for this. First, the server compiler optimizes field accesses more aggressively and can
therefore eliminate some disadvantages of unoptimized strings. Secondly, the server VM uses a parallel
garbage collector with a copying order where unoptimized string objects and their character arrays tend
to be placed consecutively in memory. So, optimized strings have only a slightly better cache behavior.
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Additionally, some compiler optimizations are not yet supported for our modified string objects, for example
escape analysis.

With a large heap size, the SPECjbb2005 benchmark results for the configurations baseline and “opti-
mized hash field” are equal. Figure 21 shows the performance for these two configurations with a heap size
of 512 MB and an increasing number of warehouses. Due to the smaller heap size and the larger number of
warehouses, the figure clearly shows a speedup for our optimization. This is the advantage of the reduced
memory usage.
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Figure 21: SPECjbb2005: performance for various numbers of warehouses with the server compiler (higher is better)

5.6. Further Fvaluations

The string optimization has a negative impact on some methods such as String.substring(). There-
fore, we executed our own micro benchmark to determine the negative impact on such methods. This micro
benchmark is a worst-case scenario for our string optimization and invokes the method String.substring()
on random strings with a length of 0 to 100 characters. For this micro benchmark, the optimized configu-
rations are about 25% slower than the baseline.

About 19% of all string allocations in the SPECjbb2005 benchmark are explicit string copies allocated
with the constructor String(String). For original strings that do not use their full character array, this
constructor allocates a trimmed copy of the character array. Because optimized strings always use all their
characters, explicit copies are useless. However, they cannot be removed easily for two reasons:

o Object equality: Without an explicit string copy, the semantics of object equality checks can change.

e Synchronization: When a string object is used as a monitor, the program behavior might change if no
explicit string copy is allocated.

These cases would have to be detected to safely eliminate explicit string copying. Both cases do not apply
to any of the explicit string copies in the SPECjbb2005 benchmark. To measure which performance could be
expected from the string optimization if the programmer knows that the allocation of explicit string copies
is unnecessary, all explicit string copies were removed for the SPECjbb2005 benchmark. Due to the factory
methods, this can be achieved easily by modifying the factory method String allocate(String original)
to be an identity function, i.e., to return original instead of a newly allocated copy. In comparison to the
baseline, the “optimized hash field” configuration shows a 18% higher performance and a reduction of the
average used memory after a full garbage collection by 20%. Furthermore, the number of allocated bytes is
reduced by 11%, and the time necessary for garbage collection is reduced by 30%.

6. Related Work

Boldi et al. implemented a class MutableString that combines the advantages of the classes String
and StringBuffer [15]. A MutableString can be in the state “compact” or “loose”. Depending on this
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state, the MutableString has either the advantages of the class String or StringBuffer. If the capacity
of the string is no longer sufficient because of string concatenation, and the string’s state is “compact”, the
MutableString is resized to exactly fit the content. If it is in the state “loose”, the size of the character
array is doubled. To allow subclasses, the class is not final and it allows the direct access to the character
array without any restrictions. This direct access is potentially unsafe and must be used carefully by the
programmer. In contrast to our optimization, existing programs must be changed and recompiled to use
the advantages of this new class. Furthermore, their optimization does not reduce the memory usage.

Tian addressed the performance problem of string concatenations [16]. If two string objects are concate-
nated, a new temporary StringBuilder or StringBuffer object is allocated, to which the characters of
both strings are copied. On this temporary object, the method toString() is invoked to allocate the re-
sulting string, which again copies all characters. Using the Java bytecode optimization framework Soot [17],
a bytecode transformation was implemented that removes redundant buffer allocations and reuses existing
buffers for the concatenation. With this transformation, the performance of string concatenation is improved
nearly up to the performance of the class StringBuilder. This optimization must be applied directly to the
class file, while ours is performed automatically behind the scenes by the VM and covers more than string
concatenations.

Ananian et al. implemented several techniques to reduce the memory usage of object-oriented pro-
grams [18]. These techniques include field reduction and the elimination of unread or constant fields. The
value range for each field is analyzed to replace the data type with a less space consuming one. Further-
more, static specialization is used to create two different string classes: one string class without the field
offset (SmallString) and one with the field offset (BigString). If the offset is zero, a SmallString
is allocated, otherwise a BigString. An evaluation with the SPECjvm98 benchmark suite showed that the
maximum live heap size is reduced by up to 40%. Some of the optimizations have a negative impact on the
performance, which manifests in a performance change from -60% to +10% for the SPECjvm98 benchmark
suite. We optimize only string objects, but always remove the field offset and merge the string’s character
array with the string object to save further memory.

Chen et al. implemented two different approaches to reduce the memory consumption. A heap com-
pression algorithm was implemented that targets memory-constrained environments such as mobile devices.
It reduces the minimum heap size that is necessary for the execution of an application [19]. A Mark-
Compact-Compress-Lazy Allocate garbage collector is its basic component. To reduce the compression and
decompression overhead, large instances and arrays are split into multiple objects that can be compressed
and decompressed independently. Lazy allocation delays the allocation of parts of large arrays that are
not used immediately. For the heap compression, an arbitrary compression algorithm can be used. The
evaluation was done with a “zero removal” compression algorithm, and showed that 35% of memory can
be saved on average. In contrast to our optimization, the compression can be applied to all kinds of Java
objects but has a negative impact on the performance.

The second approach exploits frequent field values to reduce the memory usage [20]. It uses the fact
that a small number of distinct values appear in lots of fields. Based on this, two object compressions are
proposed to reduce the memory usage. The first one is specialized on fields that are zero or null. The other
one is used for fields with other frequent values. To determine fields that can be optimized, the application
is executed with various inputs. This information is written in a separate description file that the JVM uses
to perform the optimization. Depending on the program inputs, the description file varies, which affects
the performance and the memory usage differently. The evaluation with the SPECjvm98 benchmark suite
shows that the minimum heap size is reduced by up to 24% (14% on average). The loss of performance is
below 2% for most cases. Our optimization focuses on strings but shows a reduction of memory usage and
a speedup for string-intensive benchmarks.

Dolby et al. implemented object inlining in a static compiler for a dialect of C++ [21]. This optimization
can merge some referenced objects with the referencing one, and is not limited to string objects. This
improves the cache behavior and reduces the indirection overhead. A field is a candidate for inlining when
all its uses can be located and when the relationship between the parent and the child object is unambiguous.
For this, a global data flow analysis is necessary that takes up to half of the compilation time. The average
speedup for the C++ benchmarks is 10% with a maximum of 50%. In contrast to our optimization, object
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inlining is not limited to string objects, but our optimization is performed at run time in a virtual machine
and has only a negligible analysis overhead.

Wimmer et al. implemented object inlining for the Java HotSpot™ VM [22, 23]. To determine fields
worth inlining, read barriers are used. The JIT compiler ensures that the candidate field is not overwritten
and that the objects are allocated together. This is necessary because the referencing and the referenced
objects must be located next to each other in the heap. Therefore, the garbage collector was also modified
to ensure that inlined objects are not separated. The optimization is performed automatically at run time,
but cannot optimize strings because a character array can be referenced by multiple string objects. The
mean peak performance of the SPECjvm98 benchmark suite is improved by up to 51% (9% on average).

Oracle (formerly BEA Systems, Inc.) has a patent pending to address the inefficiency of StringBuilder
and StringBuffer operations [24]. When a string is appended to a StringBuilder or StringBuffer, all
characters are copied to the buffer’s character array. If the size of this character array is no longer sufficient,
a larger character array is allocated, to which all characters must be copied. When the method toString()
is invoked, the characters are copied another time to the resulting string object. Therefore, it is more
efficient to store the references to the appended string objects instead of copying the characters to a buffer.
Additionally, a larger variety of append() methods reduces the number of method invocations. When the
toString () method is invoked, an appropriate character array with the size of the summed up length of all
string parts can be allocated. All characters are copied to this character array, which is then referenced by
the resulting string object. This optimization is beneficial for string concatenation, while our optimization
is advantageous to the usage of string objects in general.

Zilles implemented accordion arrays for Java to reduce the memory usage of character arrays [25]. Java
characters arrays are always Unicode-based, even if the top bytes of the characters are zero. Storing these
characters as bytes instead of Unicode characters saves 50% of the memory. However, code that accesses
character arrays must determine dynamically if the array uses one or two bytes for storing each character. If
a Unicode character is to be stored in an array that uses only one byte for storing each character, the array
must be inflated. The performance improves by 8% for the SPECjbb2005 benchmark and by 2% for the
DaCapo benchmark. The size of the live objects is reduced by up to 40%. By reducing the memory usage
of character arrays, memory is also saved for string objects. We do not compress any characters but merge
the string object and the character array to improve the performance and to reduce the memory usage.

Shuf et al. distinguished between frequently allocated (prolific) and rarely allocated (non-prolific) types.
Based on this, several optimizations were implemented for the Jalapeno VM. A type-based garbage collector
that distinguishes between prolific and non-prolific types increases the data locality and reduces the garbage
collection time by up to 15% [26]. Additionally, a short type pointer technique eliminates the one machine
word type pointer for prolific types by adding some small type information to the mark word. This reduces
the memory requirements by up to 16%. Furthermore, two approaches to improve the locality of Java
applications were implemented [27]. The first one allocates prolific objects that are connected by references
next to each other in the memory. The second approach uses locality based graph traversal to reduce the
garbage collection time and to increase the locality. Benchmark results for SPECjvm98, SPECjbb2000,
and jOlden show that a combination of both approaches improve the performance by up to 22% (10% on
average), if a non-copying mark-and-sweep garbage collector is used. Our optimization improves the locality
for string objects by merging the string object with its character array. This also reduces the garbage
collection time and the memory usage.

Casey et al. introduced new bytecodes to increase the performance of a Java interpreter [28]. Because
some operands are frequently used for specific bytecodes, specialized bytecodes with hardwired operands
reduce the required operand fetching. Furthermore, additional bytecodes are introduced that combine
common bytecode sequences. Instruction replication is another technique that uses multiple implementations
for one bytecode to reduce indirect branch mispredictions. Which implementation of the bytecode is executed
depends on the subsequent bytecodes. Results for the SPECjvm98 benchmark show an average speedup
of 30% to 35%. We also use introduce new bytecodes for our optimization but those are required for the
implementation and are not mainly used to improve the performance.
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7. Conclusions

We presented a string optimization that is performed automatically at run time by the Java HotSpot ™™

VM. The string object and the character array of an original string are merged into a single object. For
this merging, new bytecodes are introduced that are only used within the class String. A modified version
of javac generates the optimized class String that uses the newly introduced bytecodes. All methods that
allocate string objects are rewritten once at run time during class loading. The merging removes additional
field accesses, reduces the memory usage, speeds up garbage collection, and leads to a better cache behavior.
The evaluation with several benchmark suites shows that these advantages result in a significantly higher
overall performance and a lower memory usage.
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