
Scalable Pointer Analysis of Data Structures
using Semantic Models

Pratik Fegade

Oracle Labs and Carnegie Mellon University, USA

ppf@cs.cmu.edu

Christian Wimmer

Oracle Labs, USA

christian.wimmer@oracle.com

Abstract
Pointer analysis is widely used as a base for different kinds

of static analyses and compiler optimizations. Designing a

scalable pointer analysis with acceptable precision for use

in production compilers is still an open question. Modern

object oriented languages like Java and Scala promote ab-

stractions and code reuse, both of which make it difficult

to achieve precision. Collection data structures are an ex-

ample of a pervasively used component in such languages.

But analyzing collection implementations with full context

sensitivity leads to prohibitively long analysis times.

We use semantic models to reduce the complex internal

implementation of, e.g., a collection to a small and concise

model. Analyzing the model with context sensitivity leads

to precise results with only a modest increase in analysis

time. The models must be written manually, which is feasi-

ble because a model method usually consists of only a few

statements. Our implementation in GraalVM Native Image

shows a rise in useful precision (1.35X rise in the number

of checkcast statements that can be elided over the default

analysis configuration) with a manageable performance cost

(19% rise in analysis time).

CCS Concepts • Software and its engineering → Au-
tomated static analysis.

Keywords Pointer analysis, semantic models, data struc-

ture awareness, GraalVM Native Image

ACM Reference Format:
Pratik Fegade and Christian Wimmer. 2020. Scalable Pointer Anal-

ysis of Data Structures using Semantic Models. In Proceedings of
the 29th International Conference on Compiler Construction (CC ’20),
February 22–23, 2020, San Diego, CA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3377555.3377885

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CC ’20, February 22–23, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00

https://doi.org/10.1145/3377555.3377885

1 Introduction
Whole program pointer analysis [48] has applications in a va-

riety of different compiler analyses and optimizations. It has

been used for autoparallelization [15, 44], security analysis of

applications [29], bugfinding [20], high level synthesis [46]

among other applications. Significant amount of work has

been done in improving the precision and/or scalability of

pointer analysis [18, 28, 51, 58]. Despite this, precise pointer

analysis remains expensive and often not scalable.

Repeated analysis of methods under different calling con-

texts dominates execution time for top-down pointer anal-

ysis [59]. Commonly used components, as well as a high

degree of abstractions in the form of pointer indirections

thus lead to either high analysis costs or low analysis preci-

sion.

Collection data structures are an example of frequently

used software components. Due to their pervasive use in

many contexts in the same application, they have a signifi-

cant impact on analysis precision. Data structure implemen-

tations, however, are often quite complex and involved. For

example, the commonly used implementations of hash ta-

bles in Java, HashMap and ConcurrentHashMap contain over

2000 and 6000 lines of code [36, 37], respectively.

Past work has proposed semantic models [15] for handling
such commonly used data structures. This involves baking in

an understanding of common data structures in the compiler

by extensions to its intermediate representation (IR). Our

insight in this work is that such extensions to the compiler IR

are not necessary for the particular case of pointer analysis.

Instead, our semantic models can be obtained by manually

simplifying data structure implementations by relying on

analysis abstractions. This leads to semantic models that do

not need modifications to the compiler IR for analysis pur-

poses. We thus simplify the idea of semantic models without

much loss in precision for the case of pointer analysis.

In the presence of semantic models, we analyze the actual

implementation using imprecise contexts, to retain the anal-

ysis effects of the actual implementation, while analyzing

semantic models with more precise contexts, to obtain higher

precision. This makes the use of semantic models more ro-

bust by placing less of a burden on the model with respect

to soundness, making it easier for library and framework

developers to write semantic models for additional program

modules.

39

https://doi.org/10.1145/3377555.3377885
https://doi.org/10.1145/3377555.3377885


CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

1 abstract class S { public abstract void doWork(); }
2 class C1 extends S { public void doWork() { ... } }
3 class C2 extends S { public void doWork() { ... } }
4 void f1() {
5 Map<Object, S> m1 = new HashMap<>();
6 Object k1 = new Object();
7 C1 v1 = new C1();
8 m1.put(k1, v1);
9 S o1 = m1.get(k1);
10 o1.doWork(); // virtual call
11 }
12 void f2() {
13 Map<Object, S> m2 = new HashMap<>();
14 Object k2 = new Object();
15 C2 v2 = new C2();
16 m2.put(k2, v2);
17 S o2 = m2.get(k2);
18 o2.doWork(); // virtual call
19 }

Listing 1. Example to demonstrate the cost of analyzing

data structure implementations.

In summary, this paper contributes the following:

• We simplify and adapt the idea of semantic models for

use in the context of a scalable pointer analysis. Our

handling of semantic models in the analysis reduces

the burden of faithful modeling of data structures in

the semantic model.

• We provide semantic models for common data struc-

tures and modify an existing pointer analysis imple-

mentation to support them.

• We evaluate our implementation on a set of diverse

applications, and show improvements in analysis pre-

cision, with little loss in analysis scalability.

2 Motivation
Consider the program in Listing 1. It contains two functions,

f1 and f2. Each creates a local key-value map (lines 5 and 13)

of the type HashMap, inserts a pair of objects (lines 8 and 16)

and obtains the value back from the map (lines 9 and 17). Let

us consider when a pointer analysis can infer that variables

o1 and o2 refer only to objects of a single type (o1 refers to

instances of class C1, while o2 refers to instances of class C2).
Such inferences are useful because, in this case, they can be

used to devirtualize the calls on lines 10 and 18.

Variables o1 and o2 get their values from the calls to

HashMap.get(). Let us examine the internals of HashMap so
that the data flow through the map is clear. An abstract rep-

resentation of the heap structure of the map as implemented

in the standard JDK library is shown in Figure 1. The map

is a chained hash table containing an array (elementData)
holding references to nodes (Node and TreeNode), which
form either a linked list or a binary tree, and in turn hold

references to key-value pairs. In order to precisely infer the

HashMap

Map.Entry[]

HashMap$NodeHashMap$TreeNode

elementData

<array_elems> <array_elems>

next

left

right

Keys Values

Figure 1. Internal heap organization of data in HashMap.

types of objects variables o1 and o2 refer to, the analysis

needs to distinguish between the two maps, as well as their

internal structures (the array and the nodes). This requires at

least 3-deep heap contexts when using object sensitivity [31].

Previous work has shown that such deep contexts are not

scalable [28]. Even when contexts are selectively used only

for data structures, we show in §6 that the analysis perfor-

mance is unsuitable for use in production compilers.

We note the following two problems that lead to impreci-

sion and a lack of scalability.

• A lot of implementation artifacts do not affect the

results of a static analysis, but lead to higher analysis

costs. For example, the implementation of HashMap
switches between organizing the nodes in a linked list

and a binary tree for better lookup performance. Such

performance optimizations lead to an increase in the

analysis cost, while not affecting analysis correctness.

• To achieve context sensitivity, the actual implementa-

tion of data structures must be analyzed every time

the data structure is used in a different context.

3 Background
In this section, we give a brief introduction to semantic mod-

els (§3.1) and GraalVM Native Image (§3.2), the compiler

infrastructure we use.

3.1 Semantic Models
The idea of semantic models, as proposed in [15], is to enrich

the compiler IR with operations on commonly used data

structures like maps and lists. Then, purely for the purposes

of static analysis, one can write alternate implementations of

such data structures in terms of these added IR operations. A

static analysis can then analyze the semantic model instead

of the actual, possibly complex, implementation. Note that

semantic models are never compiled or executed at runtime.

They represent a mapping between concrete implementa-

tions of data structures (such as HashMap or ArrayList) and
the data structure IR operations that the compiler under-

stands. The developer of the data structure library or a user

of the analysis can write such semantic models. The high

level goal of semantic models therefore is to provide an alter-

nate, simpler implementation that can be analyzed without

the prohibitive costs of analyzing the actual implementation.

40



Scalable Pointer Analysis of Data Structures using Semantic Models CC ’20, February 22–23, 2020, San Diego, CA, USA

Semantic models can improve the analysis in terms of both

precision and performance. Directly encoding the seman-

tics of complex data structure operations into the compiler

IR can lead to higher precision. For example, the extension

to pointer analysis to handle the built-in map operations

in [15] allows the analysis to keep track of mappings be-

tween abstract key and value objects. Semantic models are

significantly more concise and simpler than the correspond-

ing actual implementations. The analysis can thus get away

with shallower contexts, without loss in precision. The con-

cise models reduce the analysis effort as well.

3.2 GraalVM Native Image
GraalVM Native Image [34, 35, 55] is an ahead-of-time com-

piler for Java applications built on top of the GraalVM com-

piler [11, 12, 14, 27]. It optimizes for start up time and mem-

ory footprint of the generated binaries. In order to reduce

the generated binary sizes as well as compilation times, it

constructs a call graph of the application, which is used to

determine the set of reachable methods to compile. The call

graph construction is carried out in conjunction with a clas-

sic flow insensitive, path sensitive, SSA-based Andersen style

pointer analysis [1]. The results of the analysis are also used

for optimizations like devirtualization and checkcast elision.

GraalVM Native Image eagerly runs initialization code at

build time. The user can also annotate certain portions of

the application to execute at this time. A snapshot of the

objects allocated by this initialization code is then taken and

included in the generated binary. This so-called image heap
is memory mapped in the heap of the application on startup,

thus reducing startup cost.

In order to ensure that the pointer analysis has visibility

of the image heap, the analysis is performed iteratively. Each

iteration of the analysis scans the image heap objects and

updates the points-to sets accordingly.

GraalVM Native Image makes a closed world assumption

to enable ahead of time compilation, thus requiring the user

to list, at build time, all uses of language features like reflec-

tion, native code access, and unsafe memory accesses (via

sun.misc.Unsafe in Java). The interested reader is referred

to [55] for further details regarding GraalVM Native Image.

4 Mechanism
Building on the previous sections, we now describe how a

user can go about writing semantic models (§4.1), and how

the pointer analysis uses them to gain precision (§4.2).

4.1 Writing Semantic Models
In the original proposal, semantic models involve extending

the compiler IR with higher level operations. The authors

used this additional information available to the compiler

not just for pointer analysis but for autoparallelization as

well. For the more common case of pointer analysis, however,

we can significantly simplify the idea of semantic models.

Instead of adding new IR operations, we aim to represent data

structures with already available language level operations.

We do so by taking advantage of the following observations:

O.1 Performance optimizations often do not affect the API

contract of data structures.

O.2 Static analysis abstracts concrete program semantics for

purposes of tractability and scalability [8]. For example,

pointer analysis implementations, including the one

in GraalVM Native Image, are often flow-insensitive,

and thus disregard the order of statements in programs.

O.3 Internal implementation details of a data structure, or an

API in general, do not matter as long as the specification

of the API is met.

Consider again the implementation of HashMap. Recall
from Figure 1 that the implementation uses an array of

Map.Entry objects, which are organized as linked lists or

trees, and each of which holds a key-value pair.

We now simplify the data representation of the key-value

map, based on the observations listed above. The internal

map nodes can be organized as a binary tree, or a linked list.

This is a performance optimization to avoid linear worst-

case lookup times. Because we are concerned only with the

correctness of the implementation, we can elide this perfor-

mance optimization (observation O.1).
Most pointer analysis implementations collapse elements

of an array into a single abstract location. The elementData
array can be replaced with a single field that represents all

locations of the array, with no effect on analysis precision.

Furthermore, observe that the Node class is completely in-

ternal to the map implementation, and hence can be inlined

(observation O.3). Reifying these changes in the implemen-

tation, while keeping in mind the flow-insensitive nature of

the analysis (observation O.2) leads to the semantic model

shown in Listing 2. We only show a few methods for the

purposes of illustration. The allKeys field is needed for op-

erations such as iteration over keys in the map that are not

shown in the excerpt.

Listing 2 is an intuitive summary of the data structure

implementation: Read-methods return those, and only those,

objects that are put in by write-methods. The fields allKeys
and allValues thus represent the stores of all data that is
put into the map.

4.2 Using Semantic Models: Allocation
A pointer analysis uses a single abstract object to represent

multiple concrete objects. To use semantic models for ob-

jects of a certain type, we modify the creation of abstract

objects in the analysis. Every time an abstract object is cre-

ated for a type for which we have a semantic model avail-

able, we also create an abstract object of the corresponding

semantic model type (except for the case of iterators and

collection views, which we discuss in §4.4). For example, in

41



CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

1 @SemanticModel(originalClass = java.util.HashMap.class)
2 class HashMap_Model<K, V> {
3 K allKeys;
4 V allValues;
5 public HashMap_Model() {}
6 public V get(Object key) { return this.allValues; }
7 public V put(K key, V value) {
8 this.allKeys = key;
9 this.allValues = value;
10 return this.allValues;
11 }
12 public boolean contains(Object key) {
13 return unknownBoolean();
14 }
15 public V remove(Object key) {
16 // do nothing because analysis
17 // does not model strong updates.
18 return this.allValues;
19 }
20 }

Listing 2. Excerpts of the semantic model for HashMap.

Figure 2, the variable map points to two abstract objects: one

corresponding to the original type HashMap, and the other

corresponding to the semantic model type HashMap_Model.

4.3 Using Semantic Models: Call Resolution
We now consider the resolution of calls to semantically mod-

eled methods, similar to the call to HashMap.get() in Fig-

ure 2. As mentioned in the previous section, the variable map
points to both an abstract object corresponding to the type

HashMap and one corresponding to the semantic model type

HashMap_Model. When the call to HashMap.get() on line 8

is resolved during analysis, we ensure that both the actual

implementation as well as the semantic model are inferred to

be targets of the call. On a first glance, this seems to negate

the benefits of semantic models as we also analyze the actual

implementation. We now explain why this is needed, and

how we avoid the precision loss.

Analyzing the complex actual implementation has high

analysis costs. Therefore, to obtain the most scalability ben-

efits, the call should be resolved only to the semantic model

method HashMap_Model.get(). This is however unsound
as there can be methods reachable from the actual imple-

mentation that are not reachable from the semantic model

implementation. Such methods could be part of the internal

implementation of HashMap, such as constructors of the in-

ternal Node and TreeNode classes (Figure 1). If the analysis
only ever analyzed the semantic model (shown in Listing 2),

such methods would not be discovered as reachable, leading

to unsoundness. Analyzing both the actual as well as the

semantic model implementations ensures soundness.

In order to avoid the precision loss, we exploit the follow-

ing observations:

1: fun() {

2:   HashMap map = new HashMap();

     ...

7:   Key k;

8:   Object v = map.get(k);

9: }

HashMap_Model.get(Object key) {

  return this.allValues;

}

Key.hashCode() {

  ...

}

map

HashMap

HashMap_Modelpoints to

HashMap.get(Object key) {

  int hash = key.hashCode();

  Node n = this.nodes[hash];

  return n.value;

}

Context: <EMPTY>

Context: <fun() @ 8>

Figure 2. Call resolution for a semantically modeled method.

The blue arrows represent flow of analysis information, while

the green dashed arrows are edges of the call graph.

1. Analysis soundness is unaffected by the precision of

analysis contexts.

2. Most data structure implementations interact with the

program that uses them only via function calls, and

not via global variables or static fields.

Based on the first observation, it is clear that a context-

insensitive analysis of the actual implementation is sufficient

to ensure soundness. So while the call to HashMap.get() on
line 8 of function fun() in Figure 2 gets resolved to both

HashMap.get() as well as HashMap_Model.get(), the ac-

tual method gets analyzed under a coarse context <EMPTY>,
while the model method is analyzed under the more precise

context <fun()@8>.
In order to take advantage of the more precise analysis of

semantic models, we now note the second observation. This

suggests that the analysis would obtain more precise results

if the flow of analysis information is blocked along return

path from the actual implementation. Since we do not hinder

the flow of information into the method, reachablility is not

affected (we discuss the soundness of this approach in more

detail in §4.6). Accordingly, note how analysis information

flows into variable v only from the semantic model method

and not the actual implementation in Figure 2.

Analyzing the actual implementation also helps us sim-

plify semantic models further. The writer of the model does

not have to worry about calling methods, both internal to

the data structure as well as the API-specified callbacks into

user code (like equals() and hashCode()), when writing

the semantic models. This both reduces the effort of writing

semantic models and simplifies the structure of the models.

In summary, analyzing the actual implementation is neces-

sary to ensure the soundness of the analysis, while the lower

analysis cost of semantic model enables us to use more pre-

cise contexts for them thus giving us precision. Our approach

to handling call resolution can be seens as a compromise

between the two analysis goals of soundness and precision.

42



Scalable Pointer Analysis of Data Structures using Semantic Models CC ’20, February 22–23, 2020, San Diego, CA, USA

4.4 Iterators and Collection Views
The Java Collections Framework offers different kinds of iter-

ators and views for its collections. For example, the “keyset”

view of a map is a set of all keys contained in the map. Muta-

tions to the underlying collection (the map in our example)

are reflected in the set view and vice versa. Listing 3 shows

how such a keyset view is modeled for HashMap. Other views
and iterators can be modeled similarly.

1 class HashMap_Model<K, V> {
2 public Set<K> keySet() {
3 return new KeySet_Model(this);
4 }
5 }
6 class KeySet_Model<K, V> {
7 HashMap_Model<K, V> map;
8 KeySet_Model(HashMap_Model<K, V> map) {
9 this.map = map;
10 }
11 public boolean remove(K key) {
12 return this.map.remove(key) != null;
13 }
14 }

Listing 3.Modeling keyset views on HashMap.

We discussed in §4.2 how we create an abstract object

corresponding to the appropriate semantic model type, if one

is available. Iterators and views on collections are however

handled differently. The semantic models explicitly allocate

an instance of the semantic model type for iterators and

views. This is illustrated in Listing 3. This is needed because

the model object of an iterator or a view needs access to the

model object of the underlying collection so that mutations

to one are reflected in the other.

4.5 Modeling Other Collections
We have focused our discussion on semantically modeling a

map. Modeling other container data types like lists is similar.

Operations on a list, for example, can be abstracted to reads

and writes to a single field. This field then represents all the

elements in the list. Looked at this way, our model for a map

approximates the map as two containers: one for all the keys

in the map, and another for all the values.

The fact that semantic models model the public API be-

havior of an implementation means that a single semantic

model works for multiple implementations of the API, bar-

ring a few implementation details. For example, the semantic

models for HashMap and ConcurrentHashMap share a signif-
icant amount of code by the means of inheritance in our

implementation.

4.6 Soundness
As discussed, semantic models are manually written. We

thus require the model authors to ensure the correctness of

the provided models. Given that the semantic models model

API visible effects of the modeled implementation soundly,

we now informally discuss the soundness of the approach in

terms of the points-to information computed for variables

and object fields, and the generated call graph. These are

the primary results of the pointer analysis the compilation

process in GraalVM Native Image uses.

Let 𝐶 be the call graph generated when the analysis does

not use semantic models, and 𝐶𝑠 be the call graph generated

when the analysis uses semantic models. Let M be the set

of methods that are modeled using semantic models when

generating 𝐶𝑠 . We now see how all methods reachable in 𝐶 ,

are also reachable in 𝐶𝑠 . Let 𝑅𝑚 be the set of methods in 𝐶

that are reachable via call paths that include a method in 𝑀 ,

and let 𝑅𝑛𝑚 be the set of methods that are reachable via call

paths that do not include any method in𝑀 . When generat-

ing 𝐶𝑠 , since we analyze the actual implementation of the

data structure as well (§4.3), methods in 𝑅𝑚 are also reach-

able in 𝐶𝑠 . Since we also assume that the semantic models

soundly model the API effects of the actual implementation,

the points-to information for all variables and fields in the

program is sound. This implies that methods in 𝑅𝑛𝑚 are also

reachable in 𝐶𝑠 .

There is one case, that of a semantically modeled method

calling another modeled method, which warrants some more

attention. In the context of our running HashMap example,

consider the code in Listing 4. Suppose the HashMap class

had a method containsPair as shown in the listing. This

method checks if the map contains a key-value pair. To

do this, it calls the HashMap.get() method and compares

the result with the parameter value object. So the actual

implementation calls an API method that has a semantic

model. Recall from §4.3 that we do not allow the return

values of actual implementations to flow into the caller. As

a result the return value of the call to the implementation

method HashMap.get() does not flow out. However, the

call to HashMap.get() also gets resolved to the method

HashMap_Model.get() even though the call site is within

the implementation class. Therefore, the correct return types

flow out of the call of get(), and the equals() method is

seen as reachable for all necessary types.

1 class HashMap<K, V> {
2 public boolean containsPair(Object k, Object v) {
3 return this.get(k).equals(v);
4 }
5 }

Listing 4. Modeled method call from another modeled

method.

The soundness of using semantic models relies on the anal-

ysis being able to update the heap state of the abstract model

objects in tandem with the actual abstract objects. This is

43



CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

o2 fld

o1

p2

p1fld

o1, o2
fld

fld

p2

p1

var2 = var1.fld;

var1

var2
p2

p1

o1

Figure 3. Precision loss after merging objects o1 and o2.

achieved via the method implementations in the semantic

models. When semanitically modeled data structures are mu-

tated using Java features such as reflection, the Java Native

Interface, or unsafe memory access via sun.misc.Unsafe,
such mutations are not reflected in the corresponding model

objects, resulting in unsoundness. As we model library data

structures, we argue that mutating the internals of the data

structures via any of the said mechanisms is rare as libraries

do not provide guarantees about such implementation details

as part of their API specification. As described in §3.2, all

such accesses are listed at build time. It is therefore possible

to check for such mutations and report them as errors in the

static analysis, thus having no effect on analysis soundness.

5 Implementation
This section presents details that are not novel contributions

of the paper, but provide important background informa-

tion to understand how the system works in practice and to

understand the implementation and evaluation.

5.1 Pointer Analysis Precision
As GraalVM Native Image aims to be a production compiler,

there are stringent scalability requirements on the pointer

analysis. In order to meet these requirements, by default, the

pointer analysis is context insensitive and uses one abstract

object for each type. As far the abstract analysis objects are

concerned, the analysis is thus merely type sensitive in the

default case. In the (non-default) case of allocation site sen-

sitivity, the analysis employs merging of abstract objects for

scalability. When the number of abstract objects of a par-

ticular type in a points-to set increases beyond a threshold,

all objects corresponding to that type in that points-to set

are merged into a single abstract object. Such merging leads

to a loss in precision as it amounts to abstracting multiple

objects into a single object. This is illustrated in Figure 3.

The field fld on abstract objects o1 and o2 points to objects

p1 and p2 respectively. After merging o1 and o2, however
the field loses precision as it now points to both objects p1
and p2. Despite the fact that var1 points only to o1 and not

o2, a load of fld on var1 now results in both p1 and p2.

5.2 Semantic Models and Heap Scanning
§3.2 introduced how the pointer analysis implementation

in GraalVM Native Image scans the image heap to capture

the effects of compile time initialization. Like in the static

case, we create a corresponding abstract semantic model

object every time we encounter a data structure we have

a model for, when scanning the heap. In order to update

the abstract semantic model objects, the model author also

needs to provide a scanner for each semantically modeled

data structure. This scanner iterates over the data structure

and updates the points-to sets of fields, and other structures

reachable from the semantic model objects. For example, a

scanner for HashMap would iterate over the key-value pairs

in it, while adding the corresponding abstract objects in

the points-to sets of the fields HashMap_Model.allKeys and
HashMap_Model.allValues of the semantic model object.

Iterators and view objects are handled slightly differently

in this case. We saw in §4.4 how mutations on such view

types are reflected in the underlying collection and vice versa.

As a result, the semantic model of a view type contains a ref-

erence to the underlying collection (field KeySet_Model.map
in Listing 3). Obtaining the abstract object corresponding

to the underlying collection requires us to have a mapping

between the iterator/view object and the concrete under-

lying collection object, which is difficult without accessing

internal fields of the iterator or view object. We chose not

to do so as that would make the scanning dependent on the

collection implementation. As a result, we do not semanti-

cally model views and iterators allocated at build time. We

did not observe significant drops in precision due to such

iterators or views in the image heap for our benchmarks and

hence believe that this conservative modeling is sufficient in

most cases.

5.3 Semantic Models in the Compilation Flow
In our implementation, semantic models are implemented as

regular Java classes and hence are represented like any other

class in the analysis. We use Java annotations (Listing 2) to

map the model to the corresponding modeled types.

Semantic models are unsound for concrete execution. As

a result, we need to make sure they are not compiled or

executed. After the execution of the pointer analysis, we

iterate over the entire points-to graph and remove references

to semantic models. Calls to semantic model methods, as

well as abstract objects corresponding to semantic model

types in points-to sets of fields, variables and arrays are

removed. Further stages of compilation thus are not affected

by semantic models and do not need any modifications. Our

modifications do not hinder the compiler’s functionality and

our implementation can generate functioning binaries of

applications, while enjoying the benefits of semantic models.

44



Scalable Pointer Analysis of Data Structures using Semantic Models CC ’20, February 22–23, 2020, San Diego, CA, USA

Table 1. Analysis configurations used for evaluation

Analysis config. Semantic

Models

Abstract objects Context sensitivity Types Merged

Insens No Per type None All types

DSImplSens No Per allocation for collections, per type

for others

Callsite sensitive for calls on collections,

none for others

All types

SemMerge Yes Per allocation for models, per type for

others

Callsite sensitive for calls on models,

none for others

All types

SemNoMerge Yes Per allocation for models, per type for

others

Callsite sensitive for calls on models,

none for others

All but model

types

Table 2. Benchmarks used for evaluation. The jar file size

and the number of classes include all dependencies except

the Java standard library.

Benchmark Jar size

(KB)

#classes Description

helidon [38] 6548 4347 Microservices framework

micronaut [33] 12092 8387 Microservices framework

quarkus [43] 7656 5426 Microservices framework

djbdd [30] 3240 1564 BDD library

jacc [24] 108 76 Parser generator

janino [54] 5672 3599 Java compiler

jatalog [49] 508 315 Datalog engine

jlex [2] 56 26 Lexer generator

jtidy [41] 2144 1213 HTML syntax checker

raytracer [32] 28 30 Raytracer

sablebdd [40] 56 54 BDD Library

xalan 5580 3365 XSLT processor from Da-

Capo [3] benchmark suite

6 Evaluation
We measure analysis precision and performance with and

without semantic models for the evaluation. We compare

different analysis configurations as described in Table 1.

We provide semantic models for the following collec-

tions for the analysis configurations SemMerge and Sem-

NoMerge,

• java.util.ArrayList,
• java.util.LinkedList,
• java.util.HashMap,
• java.util.LinkedHashMap, and
• java.util.concurrent.ConcurrentHashMap

These were chosen as they are some of themost commonly

used collection data structures in Java.

We use the applications listed in Table 2 as benchmarks.

Micronaut, Quarkus, and Helidon are all frameworks for

building cloud based applications in Java. They were chosen

as Java is extensively used in this domain as well as because

the past work [55] on GraalVM Native Image uses them for

evaluation. The remaining benchmarks are general-purpose

applications spanning multiple diverse domains chosen from

the set of applications the original proposal for semanticmod-

els [15] evaluates on. Given the closed world assumptions

GraalVM Native Image makes, these were the benchmarks

that we found we could evaluate on.

All experiments are performed on a 4-core, 8-thread Lenovo

ThinkPad T480 laptop with an Intel Core i5-8350U CPU

at 1.70 GHz, 16 GByte of RAM, 1 GByte of swap, running

Ubuntu 19.04 with Linux kernel version 5.0.0 and Oracle

Java HotSpot Virtual Machine 1.8.0_212-jvmci-19.2-b01 with

JVMCI enabled. The analysis timeout is set to 1 hour.

We perform the experiments on a laptop, as opposed to a

more powerful workstation because we expect the pointer

analysis to be run frequently during development as a part

of compilation with GraalVM Native Image, on development

machines, rather than server class machines. This is also the

reason why the analysis timeout is set slightly lower than

what is generally used in past work [28, 50].

Note that the analysis precision statistics and the analysis

runtimes are collected from two different runs of the analysis.

This is because statistics collection is easier when additional

analysis information is maintained during the analysis. This

information has no effect on the correctness of the analysis

but tracking it affects the runtime of the analysis. 7

Figures 4 and 5 show the analysis precision and perfor-

mance results respectively, for all the benchmarks. We also

show summaries of these results for easy comprehension

in Tables 3 and 4. Table 4 excludes benchmarks that timed

out in any of the four analysis configurations, while Table 3

includes all benchmarks for a configuration that could be

analyzed completely.

6.1 Analysis Precision
We use four metrics to evaluate analysis precision: the mean

number of types in the points-to sets of variables, the frac-

tion of checkcast statements that can be elided, the number

of reachable methods discovered by the analysis and the

fraction of virtual calls that can be devirtualized based on

the analysis results. Elided casts excludes casts for exception

types as these are mostly associated with exception handling.

Points-to sets of variables declared in semantic models, or in

the modeled classes are excluded in all of the analysis con-

figurations. Furthermore, the number of reachable methods

discovered by the analysis and the mean number of types

in the points-to sets of variables are normalized with re-

spect to the Insens configuration. Precision results for all

benchmarks are shown in Figure 4.

45



CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

0.00

0.25

0.50

0.75

1.00

he
lid
on

mi
cro
na
ut

qu
ark
us

djb
dd jac

c
jan
ino

jat
alo
g

jle
x

jtid
y

ray
tra
ce
r

sa
ble
bd
d

xa
lan

Insens DSImplSens SemMerge SemNoMerge

(a) Normalized mean number of types in points-to sets

0

0.25

0.5

0.75

1

he
lid
on

mi
cro
na
ut

qu
ark
us

djb
dd jac

c
jan
ino

jat
alo
g

jle
x

jtid
y

ray
tra
ce
r

sa
ble
bd
d

xa
lan

Insens DSImplSens SemMerge SemNoMerge

(b) Fraction of checkcast statements elided

0.5

0.6

0.7

0.8

0.9

1

he
lid
on

mi
cro
na
ut

qu
ark
us

djb
dd jac

c
jan
ino

jat
alo
g

jle
x

jtid
y

ray
tra
ce
r

sa
ble
bd
d

xa
lan

Insens DSImplSens SemMerge SemNoMerge

(c) Fraction of devirtualized calls

0.900

0.925

0.950

0.975

1.000

he
lid
on

mi
cro
na
ut

qu
ark
us

djb
dd jac

c
jan
ino

jat
alo
g

jle
x

jtid
y

ray
tra
ce
r

sa
ble
bd
d

xa
lan

Insens DSImplSens SemMerge SemNoMerge

(d) Normalized reachable methods

Figure 4. Analysis precision results. Analysis configuration DSImplSens timed out for helidon, micronaut and quarkus. All

metrics exclude methods in the Java standard library.

Table 3. Summarized pointer analysis results. For a fair comparison, averages do not include benchmarks that timed out in

any of the configurations.

Analysis Config

Normalized Analysis

Time

Normalized

Reachable Methods

Fraction of

Devirtualized Calls

Fraction of Casts Elided

Normalized Mean

#Types in Points-to Sets

Insens 1.0 1.0 0.89 0.34 1.0

DSImplSens 43.43 0.98 0.89 0.36 0.9

SemMerge 1.09 0.97 0.9 0.46 0.82

SemNoMerge 1.17 0.97 0.9 0.47 0.81

Table 4. Summarized pointer analysis results. These results include timed out runs and hence include the three large

benchmarks. DSImplSens is not included here as it times out on these. These numbers more realistically reflect overheads due

to semantic models.

Analysis Config

Normalized Analysis

Time

Normalized

Reachable Methods

Fraction of

Devirtualized Calls

Fraction of Casts Elided

Normalized Mean

#Types in Points-to Sets

Insens 1.0 1.0 0.84 0.32 1.0

SemMerge 1.19 0.98 0.85 0.47 0.79

SemNoMerge 1.83 0.98 0.85 0.47 0.78

75.47 169.68 81.96 8.96 82.75

0

1

2

3

4

5

6

7

he
lid
on

mi
cro
na
ut

qu
ark
us

djb
dd jac

c
jan
ino

jat
alo
g

jle
x

jtid
y

ray
tra
ce
r

sa
ble
bd
d

xa
lan

Insens DSImplSens SemMerge SemNoMerge

Figure 5.Analysis time results. Analysis configurationDSIm-

plSens timed out for helidon, micronaut and quarkus.

As can be seen in Table 4, the mean number of types

in the points-to sets decreases significantly by 21% in the

SemMerge configuration and by 22% in the SemNoMerge

configuration as compared to the default baseline. This in-

crease in precision is useful as it can impact the precision as

well as runtimes of downstream analyses that use the results

of the points-to analysis.

Table 3 shows that precision is generally worse for DSIm-

plSens as compared to SemMerge. Despite effectively having

the same level of context sensitivity, we believe this is be-

cause there is more chance of abstract objects being merged

in DSImplSens as compared to the semantic model cases.

46



Scalable Pointer Analysis of Data Structures using Semantic Models CC ’20, February 22–23, 2020, San Diego, CA, USA

Merging of objects corresponding to any of the multiple in-

ternal structures in the data structure might cause a loss in

precision in DSImplSens. Thus semantic models appear to

be more robust to accidental merging.

The analysis configurations SemMerge, SemNoMerge

and DSImplSens primarily lead to an increase in precision

of the results of data structure operations. Due to Java’s type

erasure [39], results of operations on data structures are often

guarded by checkcast statements. The increase in precision

in these analysis configurations thus leads to an increase

in the fraction of such cast statements that can be proven

safe statically and hence elided. This increase in precision

however does not have a significant effect on other parts of

the program, as evidenced by the fraction of calls that can

be devirtualized because the knowledge of types in Java is

already enough to devirtualize a significant fraction of virtual

calls. We believe this is also the reason why the number of

reachable methods does not decrease significantly.

6.2 Analysis Performance
We use analysis time as a measure of analysis scalability.

We normalize the analysis time with respect to that of the

Insens configuration. These results is shown in Figure 5.

Using semantic models amounts to a higher analysis cost

(19% increase in the case of SemMerge on average) as com-

pared to the imprecise baseline because there is additional

analysis cost in analyzing the semantic model implemen-

tations with their higher context sensitivity. DSImplSens,

however leads to a 43X increase in the analysis runtime.

For three of our moderately sized benchmarks (helidon, mi-

cronaut and quarkus), DSImplSens does not even complete

execution, timing out in each case.

6.3 Relationship between Analysis Precision and
Performance

It is observed that pointer analysis cost often first drops, be-

fore rising again, when the analysis precision is increased in

the form of higher context sensitivity. While deeper contexts

lead to a higher number of points-to sets, their overall size

decreases due to the added precision.

We however did not observe such an effect in our eval-

uation. This is because the baseline configuration Insens

abstracts all objects of the same type to a single abstract

object. The size of points-to sets is thus bounded by the total

number of types in the application, which is generally quite

low even for large applications. Thus the decrease in the

points-to set sizes does not offset the increase in their num-

ber with higher precision in the form of semantic models.

For the evaluation, we have provided semantic models for

a few commonly used data structures in the Java standard

library. As a result, benefits are seen only for benchmarks

that use these data structures. Some benchmarks like jacc

and raytracer, for example do not extensively use any stan-

dard library data structure. This explains the high variation

1 class Graph_Model<Pn, Pe> {
2 Node_Model<Pn> allNodes;
3 Edge_Model<Pe> allEdges;
4 }
5 class Node_Model<Pn, Pe> {
6 Edge_Model<Pn, Pe> allIncidentEdges;
7 Pn allProperties;
8 }
9 class Edge_Model<Pn, Pe> {
10 Node_Model<Pn, Pe> bothIncidentNodes;
11 Pe allProperties;
12 }

Listing 5. Possible semantic model for a property graph. We

focus on modeling data and do not show method implemen-

tations for brevity.

in the results obtained. We stress that this is not a limita-

tion of the approach, as the user can easily add semantic

models for other data structures they wish to use. This ex-

tensibility is practically useful as a number of large applica-

tions implement specific data structures tuned for their use

cases [17, 52, 53].

7 Models for Other Data Structures and
Analyses

We believe that it is easy to generalize semantic models for

other data structures, as well as other non-data structure

classes. We briefly discuss how this could be done for graphs.

Graphs are commonly used to represent various kinds of

data [10, 21]. Such graph data is generally organized as a set

of graph nodes, each of which has edges to other nodes in

the graph. Nodes and edges can have labels and properties

associated with them. Depending on the actual implementa-

tion of the graph under consideration, a semantic model for

such a graph could look like the one shown in Listing 5.

Similarly, since most static analyses abstract the concrete

semantics of the underlying languages in some way, we be-

lieve that it should be possible to write semantic models for

other kinds of static analysis. For example, [19] showed how

pointer and taint analyses can be unified in a single frame-

work, thus making it straightforward to use semantic models

for static taint analysis. Depending on how an analysis ab-

stracts concrete semantics, the models might differ from our

models for pointer analysis. For example, semantic models

written for an analysis for race detection may retain code

for synchronization, which we elide for a pointer analysis.

Semantic models can also be used for modeling hard-to-

analyze features such as reflection and native code accesses.

For example, field loads using reflection can be presented to

the analysis as normal field loads using semantic models.

47



CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

8 Related Work
Semantic Models and Data Structure Awareness: As

discussed in the earlier sections, semantic models were pro-

posed in [15]. §4 explains how our work significantly sim-

plifies semantic models. As a result of this simplification, we

also believe we make them more general and easier to write

for the library developer, or even the end user.

Our simplifications to semantic models, specifically the

fact that data structures are no longer first class objects in

the compiler leads to a certain loss in precision as far as

key-value maps are concerned. This is because the analysis

can no longer maintain a mapping between abstract key and

value objects. We believe that this loss in precision not be sig-

nificant, especially because the abstract objects in the pointer

analysis in GraalVM Native Image are coarser grained (§5.1)

as compared to the ones in [15]. In fact, this simpler design

allows us to be more general as we do not have to modify the

compiler IR or accompanying analyses for adding semantic

models for additional data structures.

Cohen et al. [7] propose a container aware alias analysis.

However, their proposal is not as easily extensible in terms of

new data structures as ours is. Their analysis is designed for

the special case of container traversals and is geared more

towards autoparallelization and related optimizations.

Shape analysis [5, 16, 45, 56] can identify data structures,

infer properties about them and use these for a variety of

applications. The approach of semantic models differs from

shape analysis in that the necessary inferences about data

structures are provided to the analysis externally in the form

of semantic models thus reducing analysis effort in perform-

ing these inferences.

Procedure Summaries: Semantic models are similar to

procedure summaries [47, 57] as both of them use summa-

rized representations of the actual implementation. Proce-

dure summaries, however, are automatically generated by the

analysis and hence cannot aggressively simplify the imple-

mentation like users can when they write semantic models.

In [13], the authors are able to infer API specifications

like described in §2 using machine learning. However, the in-

ferred specifications could be unsound, and possibly require

expensive ML training for every new library, or data struc-

ture, that needs to be added. Obtaining training programs

using new and custom data structures might not be feasible

either. Writing semantic models for data structure would

therefore be significantly easier and less time consuming.

Manual Specifications, Annotations and API Stubs:
There has been a significant amount of work exploring man-

ual or external specifications or annotations for static anal-

ysis and program verification [4, 6, 23, 25, 26]. Semantic

models also involve the user specifying the behavior of data

structures for an analysis to use. One difference between

semantic models and the previous work on manual specifica-

tions is that the latter required the user to specify program

behavior in some logic, or a similarly constructed language.

However semantic models can be written in Java without any

modifications to the language. Also, semantic models focus

more on modeling the heap-related behavior of the program,

while specifications can be quite general. This contributes to

the simplicity of semantic models. Also, because we analyze

the actual data structure implementation as well, seman-

tic models need not be sound with respect to all program

behaviors.

Stubbing out APIs is well-known as an analysis engineer-

ing technique, used often to model APIs the source code for

which is not available during analysis. However, our work

goes beyond simple function-effect summaries because we

can allow models (or “stubs”) that simplify the actual imple-

mentation, skipping some effects or aspects of the algorithm

if they are not relevant to the analysis. We can do this be-

cause we are aware of what the analysis is actually trying

to derive. We can thus often omit complex data-structure

optimizations, or fast-paths, or other engineering details.

The Jahob system for program verification [26] has a no-

tion of data structures and allows the user to write specifica-

tions which the system can verify. While similar to semantic

models, the specifications required for the system to work

are more complex as compared to the semantic models.

Domain Specific Languages (DSLs): In domain specific

languages or frameworks [9, 22, 42], the compiler can op-

timize programs based on a high level knowledge about

domain specific data structures and operations on them. Se-

mantic models also, in some sense, make the compiler aware

of (a part of) the semantics of data structures. This is done

without restricting the user to a particular DSL.

9 Conclusions
This work evaluates the feasibility of employing past work

on semantic models in the context of a pointer analysis in a

production compiler. We believe that the results obtained are

encouraging and therefore suggest the usefulness of such

approaches in production settings. As discussed in §7, we be-

lieve that approaches similar to semantic models can be fruit-

fully employed to improve the precision as well as scalability

of a variety of static analyses other than pointer analysis.

Encouraged by the results obtained, we believe that semantic

models could similarly improve the precision and/or scala-

bility of other such analyses.

Acknowledgments
We thank Chris Fallin, Todd Mowry, Phil Gibbons, and Co-

drut Stancu for their support, contributions, and feedback

on this paper.

Oracle and Java are registered trademarks of Oracle and/or

its affiliates. Other names may be trademarks of their respec-

tive owners.

48



Scalable Pointer Analysis of Data Structures using Semantic Models CC ’20, February 22–23, 2020, San Diego, CA, USA

References
[1] Lars Ole Andersen. 1994. Program Analysis and Specialization for the

C Programming Language. Technical Report.
[2] Elliot Joel Berk and C. Scott Ananian. 2003. JLex: A Lexical Analyzer

Generator for Java. https://www.cs.princeton.edu/~appel/modern/
java/JLex/

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.

Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis.

In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications. ACM Press, 169–

190. https://doi.org/10.1145/1167473.1167488
[4] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,

Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-

mons, Hyojin Sung, and Mohsen Vakilian. 2009. A Type and Effect

System for Deterministic Parallel Java. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’09). ACM Press, New York, NY, USA, 97–

116. https://doi.org/10.1145/1640089.1640097
[5] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok

Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction.

J. ACM 58, 6, Article 26 (Dec. 2011), 66 pages. https://doi.org/10.1145/
2049697.2049700

[6] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.

Morris, and Eddie Kohler. 2015. The Scalable Commutativity Rule:

Designing Scalable Software for Multicore Processors. ACM Trans.
Comput. Syst. 32, 4, Article 10 (Jan. 2015), 47 pages. https://doi.org/10.
1145/2699681

[7] Albert Cohen, Peng Wu, and David Padua. 2001. Pointer Analysis for

Monotonic Container Traversals.

[8] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages. ACM Press, 238–

252. https://doi.org/10.1145/512950.512973
[9] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,

Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex

Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan.

2011. Liszt: A Domain Specific Language for Building Portable Mesh-

based PDE Solvers. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC ’11). ACM Press, New York, NY, USA, Article 9, 12 pages. https:
//doi.org/10.1145/2063384.2063396

[10] Georgios Drakopoulos, Andreas Kanavos, and Athanasios Tsakalidis.

2016. Evaluating Twitter Influence Ranking with System Theory.

https://doi.org/10.5220/0005811701130120
[11] Gilles Duboscq, ThomasWürthinger, andHanspeterMössenböck. 2014.

Speculation Without Regret: Reducing Deoptimization Meta-data in

the Graal Compiler. In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’14). ACM Press, New York, NY,

USA, 187–193. https://doi.org/10.1145/2647508.2647521
[12] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-

mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate

Representation for Speculative Optimizations in a Dynamic Compiler.

In Proceedings of the 7th ACM Workshop on Virtual Machines and Inter-
mediate Languages (VMIL ’13). ACM Press, New York, NY, USA, 1–10.

https://doi.org/10.1145/2542142.2542143
[13] Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin Vechev.

2019. Unsupervised Learning of API Aliasing Specifications. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2019). Association for Computing

Machinery, New York, NY, USA, 745–759. https://doi.org/10.1145/
3314221.3314640

[14] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and

Hanspeter Mössenböck. 2016. Trace-based Register Allocation in a

JIT Compiler. In Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’16). ACM Press, New York, NY,

USA, Article 14, 11 pages. https://doi.org/10.1145/2972206.2972211
[15] Christopher Fallin. 2019. Finding and Exploiting Parallelism with Data-

Structure-Aware Static and Dynamic Analysis. Ph.D. Dissertation. Pitts-
burgh, PA, USA.

[16] Rakesh Ghiya and Laurie J. Hendren. 1996. Is It a Tree, a DAG, or a

Cyclic Graph?A ShapeAnalysis for Heap-directed Pointers in C. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages. ACM Press, 1–15. https://doi.org/10.1145/237721.237724

[17] Google. 2019 (accessed October 17, 2019). Gson. https:
//github.com/google/gson/blob/master/gson/src/main/java/com/
google/gson/internal/LinkedTreeMap.java

[18] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis

Smaragdakis. 2018. Shooting from the Heap: Ultra-scalable Static

Analysis with Heap Snapshots. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2018).
ACM Press, New York, NY, USA, 198–208. https://doi.org/10.1145/
3213846.3213860

[19] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-

to and Taint Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article
102 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133926

[20] Samuel Z. Guyer and Calvin Lin. 2005. Error checking with client-

driven pointer analysis. Science of Computer Programming 58, 1 (2005),

83 – 114. https://doi.org/10.1016/j.scico.2005.02.005 Special Issue on

the Static Analysis Symposium 2003.

[21] Nathan Hawes, Ben Barham, and Cristina Cifuentes. 2015. FrappÉ:

Querying the Linux Kernel Dependency Graph. In Proceedings of the
GRADES’15 (GRADES’15). ACM Press, New York, NY, USA, Article 4,

6 pages. https://doi.org/10.1145/2764947.2764951
[22] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun.

2012. Green-Marl: A DSL for Easy and Efficient Graph Analysis.

In Proceedings of the Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS XVII). ACM Press, New York, NY, USA, 349–362. https:
//doi.org/10.1145/2150976.2151013

[23] Daniel J. Quinlan, Markus Schordan, Richard Vuduc, and Qing Yi.

2006. Annotating user-defined abstractions for optimization. 20th
International Parallel and Distributed Processing Symposium, IPDPS
2006 2006. https://doi.org/10.1109/IPDPS.2006.1639722

[24] Mark P Jones. 2019 (accessed August 16, 2019). Jacc: Just another

compiler compiler for Java. http://web.cecs.pdx.edu/~mpj/jacc/.
[25] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Ke-

shav Pingali. 2011. Exploiting the Commutativity Lattice. SIGPLANNot.
46, 6 (June 2011), 542–555. https://doi.org/10.1145/1993316.1993562

[26] Viktor Kuncak and Martin Rinard. 2006. An Overview of the Jahob

Analysis System: Project Goals and Current Status. In Proceedings of
the 20th International Conference on Parallel and Distributed Processing
(IPDPS’06). IEEE Computer Society, Washington, DC, USA, 285–285.

http://dl.acm.org/citation.cfm?id=1898699.1898807
[27] David Leopoldseder, Lukas Stadler, Manuel Rigger, Thomas

Würthinger, and Hanspeter Mössenböck. 2018. A Cost Model for a

Graph-based Intermediate-representation in a Dynamic Compiler.

In Proceedings of the 10th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL 2018). ACM Press,

New York, NY, USA, 26–35. https://doi.org/10.1145/3281287.3281290
[28] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018.

Scalability-first Pointer Analysis with Self-tuning Context-sensitivity.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software

49

https://www.cs.princeton.edu/~appel/modern/java/JLex/
https://www.cs.princeton.edu/~appel/modern/java/JLex/
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2699681
https://doi.org/10.1145/2699681
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.5220/0005811701130120
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/3314221.3314640
https://doi.org/10.1145/3314221.3314640
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/237721.237724
https://github.com/google/gson/blob/master/gson/src/main/java/com/google/gson/internal/LinkedTreeMap.java
https://github.com/google/gson/blob/master/gson/src/main/java/com/google/gson/internal/LinkedTreeMap.java
https://github.com/google/gson/blob/master/gson/src/main/java/com/google/gson/internal/LinkedTreeMap.java
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/3133926
https://doi.org/10.1016/j.scico.2005.02.005
https://doi.org/10.1145/2764947.2764951
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1109/IPDPS.2006.1639722
http://web.cecs.pdx.edu/~mpj/jacc/
https://doi.org/10.1145/1993316.1993562
http://dl.acm.org/citation.cfm?id=1898699.1898807
https://doi.org/10.1145/3281287.3281290


CC ’20, February 22–23, 2020, San Diego, CA, USA Pratik Fegade and Christian Wimmer

Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM Press, New York, NY, USA, 129–140.

https://doi.org/10.1145/3236024.3236041
[29] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security

Vulnerabilities in Java Applications with Static Analysis. In Proceedings
of the 14th Conference on USENIX Security Symposium - Volume 14
(SSYM’05). USENIX Association, Berkeley, CA, USA, 18–18. http:
//dl.acm.org/citation.cfm?id=1251398.1251416

[30] Diego J. Romero López. 2019 (accessed August 16, 2019). DJBDD:

Java BDD implementation based on hashmaps. https://github.com/
diegojromerolopez/djbdd

[31] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-

terized Object Sensitivity for Points-to Analysis for Java. ACM Trans.
Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. https://doi.org/10.1145/
1044834.1044835

[32] I. Mokhtarzada. 2019 (accessed August 16, 2019). A Simple Ray Tracer

written in Java. https://github.com/idris/raytracer.
[33] Object Computing. 2019 (accessed August 16, 2019). Micronaut Frame-

work. https://micronaut.io
[34] Oracle. 2019 (accessed August 15, 2019). GraalVM Native Image. https:

//www.graalvm.org/docs/reference-manual/aot-compilation/
[35] Oracle. 2019 (accessed August 15, 2019). GraalVMNative Image Source

Code. https://github.com/oracle/graal/tree/master/substratevm
[36] Oracle. 2019 (accessed August 16, 2019). ConcurrentHashMap

Implementation. http://hg.openjdk.java.net/jdk8/jdk8/
jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/
ConcurrentHashMap.java

[37] Oracle. 2019 (accessed August 16, 2019). HashMap Implementa-

tion. http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/
src/share/classes/java/util/HashMap.java

[38] Oracle. 2019 (accessed August 16, 2019). Helidon Project: Java libraries

crafted for Microservices. https://helidon.io/
[39] Oracle. 2019 (accessed October 31, 2019). The Java Tutorials: Type

Erasure. https://docs.oracle.com/javase/tutorial/java/generics/erasure.
html..

[40] F. Qian. [n.d.]. SableBDD: A Java Binary Decision Diagram Package.

http://www.sable.mcgill.ca/~fqian/SableJBDD/.
[41] A. Quick. 2019 (accessed August 16, 2019). JTidy: HTML Parser and

Pretty Printer in Java. http://jtidy.sourceforge.net/index.html.
[42] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Recom-

putation in Image Processing Pipelines. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. ACM Press, 519–530. https://doi.org/10.1145/2491956.2462176

[43] RedHat. 2019 (accessed August 16, 2019). Quarkus: Supersonic Sub-

atomic Java. https://quarkus.io
[44] Radu Rugina and Martin Rinard. 1999. Automatic Parallelization of

Divide and Conquer Algorithms. In Proceedings of the Seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’99). ACM Press, New York, NY, USA, 72–83. https://doi.org/
10.1145/301104.301111

[45] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. 2002. Parametric

Shape Analysis via 3-valued Logic. ACM Trans. Program. Lang. Syst.
24, 3 (May 2002), 217–298. https://doi.org/10.1145/514188.514190

[46] Luc Roger Semeria. 2001. Applying Pointer Analysis to the Synthesis of
Hardware from C. Ph.D. Dissertation. Advisor(s) Micheli, Giovanni

De. AAI3026902.

[47] M Sharir and A Pnueli. 1978. Two approaches to interprocedural data
flow analysis. New York Univ. Comput. Sci. Dept., New York, NY.

https://cds.cern.ch/record/120118
[48] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis.

Foundations and Trends® in Programming Languages 2, 1 (2015), 1–69.
https://doi.org/10.1561/2500000014

[49] Werner Stoop. 2019 (accessed August 16, 2019). Jatalog: Java Datalog

Engine with Semi-Naive Evaluation and Stratified Negation. https:
//github.com/wernsey/Jatalog.

[50] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive

Pointer Analysis More Precise with Still k-Limiting. In Static Analysis,
Xavier Rival (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489–

510.

[51] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-

to Analysis: Modeling the Heap by Merging Equivalent Automata.

SIGPLAN Not. 52, 6 (June 2017), 278–291. https://doi.org/10.1145/
3140587.3062360

[52] The Apache Software Foundation. 2019 (accessed October 17, 2019).

Apache Dubbo. https://github.com/apache/dubbo/blob/master/
dubbo-filter/dubbo-filter-cache/src/main/java/org/apache/dubbo/
cache/support/expiring/ExpiringMap.java

[53] The Apache Software Foundation. 2019 (accessed October 17,

2019). ElasticSearch. https://github.com/elastic/elasticsearch/blob/
master/server/src/main/java/org/elasticsearch/common/collect/
CopyOnWriteHashMap.java

[54] Arno Unkrig. 2019 (accessed August 16, 2019). Janino: A super-small,

super-fast Java compiler. http://janino-compiler.github.io/janino/
[55] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul

Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019.

Initialize Once, Start Fast: Application Initialization at Build Time.

Proc. ACM Program. Lang. 3, OOPSLA, Article 184 (Oct. 2019), 29 pages.
https://doi.org/10.1145/3360610

[56] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron

Cook, Dino Distefano, and Peter O’Hearn. 2008. Scalable Shape Analy-

sis for Systems Code. In Proceedings of the 20th International Conference
on Computer Aided Verification (CAV ’08). Springer-Verlag, Berlin, Hei-
delberg, 385–398. https://doi.org/10.1007/978-3-540-70545-1_36

[57] Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Precise

and Concise Procedure Summaries. SIGPLAN Not. 43, 1 (Jan. 2008),
221–234. https://doi.org/10.1145/1328897.1328467

[58] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing

Zhang. 2010. Level by Level: Making Flow- and Context-sensitive

Pointer Analysis Scalable for Millions of Lines of Code. In Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO ’10). ACM Press, New York, NY, USA,

218–229. https://doi.org/10.1145/1772954.1772985
[59] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. Hy-

brid Top-down and Bottom-up Interprocedural Analysis. SIGPLANNot.
49, 6 (June 2014), 249–258. https://doi.org/10.1145/2666356.2594328

50

https://doi.org/10.1145/3236024.3236041
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dl.acm.org/citation.cfm?id=1251398.1251416
https://github.com/diegojromerolopez/djbdd
https://github.com/diegojromerolopez/djbdd
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://github.com/idris/raytracer
https://micronaut.io
https://www.graalvm.org/docs/reference-manual/aot-compilation/
https://www.graalvm.org/docs/reference-manual/aot-compilation/
https://github.com/oracle/graal/tree/master/substratevm
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ConcurrentHashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ConcurrentHashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ConcurrentHashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java
https://helidon.io/
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html.
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html.
http://www.sable.mcgill.ca/~fqian/SableJBDD/
http://jtidy.sourceforge.net/index.html
https://doi.org/10.1145/2491956.2462176
https://quarkus.io
https://doi.org/10.1145/301104.301111
https://doi.org/10.1145/301104.301111
https://doi.org/10.1145/514188.514190
https://cds.cern.ch/record/120118
https://doi.org/10.1561/2500000014
https://github.com/wernsey/Jatalog
https://github.com/wernsey/Jatalog
https://doi.org/10.1145/3140587.3062360
https://doi.org/10.1145/3140587.3062360
https://github.com/apache/dubbo/blob/master/dubbo-filter/dubbo-filter-cache/src/main/java/org/apache/dubbo/cache/support/expiring/ExpiringMap.java
https://github.com/apache/dubbo/blob/master/dubbo-filter/dubbo-filter-cache/src/main/java/org/apache/dubbo/cache/support/expiring/ExpiringMap.java
https://github.com/apache/dubbo/blob/master/dubbo-filter/dubbo-filter-cache/src/main/java/org/apache/dubbo/cache/support/expiring/ExpiringMap.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/common/collect/CopyOnWriteHashMap.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/common/collect/CopyOnWriteHashMap.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/common/collect/CopyOnWriteHashMap.java
http://janino-compiler.github.io/janino/
https://doi.org/10.1145/3360610
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1145/1328897.1328467
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1145/2666356.2594328

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 Semantic Models
	3.2 GraalVM Native Image

	4 Mechanism
	4.1 Writing Semantic Models
	4.2 Using Semantic Models: Allocation
	4.3 Using Semantic Models: Call Resolution
	4.4 Iterators and Collection Views
	4.5 Modeling Other Collections
	4.6 Soundness

	5 Implementation
	5.1 Pointer Analysis Precision
	5.2 Semantic Models and Heap Scanning
	5.3 Semantic Models in the Compilation Flow

	6 Evaluation
	6.1 Analysis Precision
	6.2 Analysis Performance
	6.3 Relationship between Analysis Precision and Performance

	7 Models for Other Data Structures and Analyses
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

