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Abstract
Today’s web applications are pushing the limits of modern web
browsers. The emergence of the browser as the platform of choice
for rich client-side applications has shifted the use of in-browser
JavaScript from small scripting programs to large computationally
intensive application logic. For many web applications, JavaScript
performance has become one of the bottlenecks preventing the
development of even more interactive client side applications.
While traditional just-in-time compilation is successful for stati-
cally typed virtual machine based languages like Java, compiling
JavaScript turns out to be a challenging task. Many JavaScript
programs and scripts are short-lived, and users expect a responsive
browser during page loading. This leaves little time for compilation
of JavaScript to generate machine code.

We present a trace-based just-in-time compiler for JavaScript
that uses run-time profiling to identify frequently executed code
paths, which are compiled to executable machine code. Our ap-
proach increases execution performance by up to 116% by decom-
posing complex JavaScript instructions into a simple Forth-based
representation, and then recording the actually executed code path
through this low-level IR. Giving developers more computational
horsepower enables a new generation of innovative web applica-
tions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Compilers

General Terms Design, Languages, Performance

Keywords JavaScript, Trace Trees, Tracing, Forth, Type Special-
ization, Tamarin, Dynamic Compilation, Dynamically Typed Lan-
guages

1. Introduction
The web has become an ubiquitous platform for content-rich appli-
cations. In the early days of “Web 1.0”, most web sites were fairly
static and provided little user interaction. The “Web 2.0” revolu-
tion redefined the browser as a vehicle for delivering richer media
content and interactivity through a fusion of existing technologies,
most notably Asynchronous JavaScript and XML (AJAX). As web
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applications become more sophisticated, they rely more and more
on JavaScript to do the heavy lifting rather than just using it for triv-
ial scripting tasks. As a result, JavaScript performance has become
a real bottleneck to the web experience.

The flexibility and rapid prototyping abilities of dynamically
typed languages such as JavaScript are the main factors contribut-
ing to their popularity on the web. Today’s web applications are
built using an array of largely independent technologies such as
HTML, CSS, XML, and SQL. Making these technologies work
together requires a flexible and dynamically typed language. Un-
fortunately, flexibility comes at a cost. The performance of dynam-
ically typed languages has long been many orders of magnitude
lower than their statically typed counterparts. Poor JavaScript per-
formance is a severe limitation for web applications.

Due to their highly dynamic structure, dynamically typed lan-
guages are poor candidates for just-in-time compilation. For this
reason, most dynamically typed language runtimes instead rely on
interpretation as their primary means of execution. We introduce
Tamarin-Tracing, a new JavaScript virtual machine that aims to
break the poor performance barrier. Our approach is to make just-
in-time (JIT) compilation effective in a dynamically typed language
runtime environment. We accomplish this by using a novel trace-
based compilation technique [13], which is effective in eliminating
many of the problems that arise when building traditional JIT com-
pilers for dynamically typed languages. Our trace-based compiler
selects and compiles only frequently executed “hot” code paths,
while interpreting rarely executed code. Moreover, the code se-
lected for compilation can be type specialized according to the type
profile of the running application, allowing our compiler to make
aggressive type driven optimizations. This makes it possible for us
to remove much of the principal overhead of the dynamically typed
JavaScript language, compiling untyped code as typed code.

We compare Tamarin-Central, a conventional compiler used in
the current virtual machine shipping with Adobe Flash 9, with
Tamarin-Tracing, a trace-based just-in-time compiler. We found
that Tamarin-Tracing outperforms Tamarin-Central by up to 116%.
Our experience with Tamarin-Tracing allows us to make the fol-
lowing contributions:

1. We present a trace-based just-in-time compiler for JavaScript.

2. We compare our compiler against other production JavaScript
runtimes.

3. We investigate type specialization on traces.

4. We show the performance implications of using complex vs.
simple opcodes.
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2. Tamarin
Tamarin is the code name used for Adobe’s virtual machines that
implement ActionScript 3 (AS3) [1], a flavor of ECMAScript [11].
JavaScript is also a flavor of ECMAScript, however AS3 supports
multiple constructs that JavaScript does not, such as optional static
typing, packages, classes, and early binding. AS3 has a syntax that
is similar to JavaScript, and most JavaScript can be executed on
Tamarin without any modification. Tamarin does not directly op-
erate on AS3 source code, but instead executes a bytecode inter-
mediate format known as ActionScript bytecode (ABC) [2]. Con-
ceptually, this is the equivalent of the Java Virtual Machine Lan-
guage (JVML) bytecode [19]. ActionScript bytecode, like JVML
bytecode, is a stack based intermediate representation. ActionScript
source files are converted to ActionScript bytecode using the Adobe
Flex compiler [3].

There are currently two development branches of Tamarin:
Tamarin-Central (TC) and Tamarin-Tracing (TT). Tamarin-Central
is the current virtual machine shipping with Adobe Flash 9, while
Tamarin-Tracing is a research virtual machine slated for future ver-
sions of Adobe Flash. Tamarin-Central uses a conventional inter-
preter and JIT compiler, while Tamarin-Tracing leverages a trace-
based compiler to achieve performance improvements. Tamarin-
Tracing is partially a self-hosting compiler, with many portions of
the system itself written in ActionScript 3. Tamarin-Tracing uses
the Forth language as an intermediate representation. Before Ac-
tionScript source can be executed, it is first compiled to ABC and
then translated to Forth. Tamarin-Tracing is essentially a Forth vir-
tual machine.

Forth is a stack-based programming language that uses reverse
Polish notation and operates on subroutines known as Words. Con-
ceptually, programming in Forth is similar to programming in
JVML, each Forth word behaving like a JVML bytecode. Tamarin
contains roughly 200 Primitive Words, which implement the basic
operations such as performing arithmetic or stack manipulation. In
Forth, words known as Super Words can be constructed by combin-
ing other Primitive Words. For example, consider the JVML iinc
opcode that increments a local variable’s value. Conceptually, iinc
combines the opcodes iload, iconst 1, iadd, istore into one opcode.
Tamarin contains roughly 500 Super Words.

Tamarin-Tracing profiles the execution of Forth code through
the Forth interpreter and selects frequently executed code paths
for compilation. Tamarin-Tracing profiles backward branches and
triggers trace recording when a certain threshold is crossed. This
metric is effective in identifying hot loop headers. Once a loop
header is discovered, the virtual machine attempts to record the
execution of Forth words until the loop header is reached again.
This ensures that recorded path, or trace, is a path through a hot
loop, and therefore worth compiling. During the trace recording
process, Super Words are broken down into Primitive Words. This
simplifies the compiler and allows for more Super Words to be
added in the future without modifying the trace compiler.

During trace recording, Tamarin-Tracing translates Primitive
Forth Words into a low-level intermediate representation (LIR).
The LIR passes through various optimization stages before it is
finally compiled into machine code by the back-end. Tamarin-
Tracing currently supports ARM, Thumb, and x86. Once the ma-
chine code finishes execution, control is returned back to the inter-
preter.

3. Opcode Granularity
Web applications differ in many ways from server and client side
applications. Web applications need to load fast, and execute code
in short bursts quickly. This means that JavaScript JIT compilers
must have short startup times and keep compilation time to a

minimum. A fast interpreter is also essential in the case of a snippet
of JavaScript code that runs for only a few milliseconds. The
argument that a slow interpreter is acceptable is no longer valid
on the web.

The poor performance of interpreters is largely due to the high
cost of opcode dispatch. Each opcode dispatch is at a minimum one
indirect branch, which often introduces processor pipeline stalls.
The complexity of individual instructions is largely dwarfed by the
high dispatch overhead. A “simple” opcode has a fine granularity
yet higher dispatch overhead. A “complex” opcode has a coarse
granularity with the advantage of low dispatch cost. For this rea-
son, a common interpreter optimization is to group single simple
opcodes into larger complex opcodes. This reduces the number of
dispatches at the expense of opcode complexity, which can lead
to better interpreter performance. Forth is able to mend itself well
to varying levels of opcode granularity. During interpretation, the
coarse granularity of Super Words can reduce opcode dispatch cost,
while during trace recording the compiler is able to reduce the Su-
per Words to finer grained primitive words.

4. Forth
Forth operates on two stacks: the data stack and the return stack.
The data stack is used for arithmetic operations, while the return
stack is used for control flow operations. Consider the sample Forth
code:

10 20 + .
This Forth code sequence pushes the numbers 10 and 20 onto

the data stack. These numbers are then popped off the data stack,
added, and their sum is then pushed back onto the stack. The “.”
Forth word prints the result onto the screen.

Forth was chosen as an intermediate language due to the lan-
guage’s ease in refactoring and resulting code size. Forth contains
a small number of primitive words, such as add. New words are
constructed by concatenating previous words. Word definitions do
not take parameters, and instead operate on either the data or re-
turn stack without any explicit parameters. Words can be rewritten
and new words can be defined without changing large portions of
code. The LIR can be created by translating only primitive words.
Thus, we can quickly refactor the Forth as needed without changing
the underlying LIR. Finally, we are targeting Tamarin to be used in
both Desktop and Mobile environments, which requires Tamarin to
have a small code size. Therefore, Forth suits our needs due to its
compact code size.

4.1 Generating Super Words
Super Words are created by searching for sequences of words that
do not span basic block boundaries. All available defined words are
candidates for the super wording process. The Forth compiler looks
at all such words and constructs Super Words out of them. Consider
the following example for the Forth word PrintScopeObject:

: PrintScopeObject
FindScope DUP IF EXIT THEN
DROP SearchScope PrintObject ;

Both FindScope and DUP do not cross basic block boundaries,
and are merged into one Super Word. The sequence IF EXIT THEN
affects control flow and therefore cannot become a Super Word.
The final sequence of words DROP SearchScope PrintObject
again does not cross basic block boundaries, and can be merged into
one Super Word. The final implementation of PrintScopeObject
that the Forth interpreter actually executes is:

(op_FindScope_DUP)
(BRF + 2) // IF becomes Branch False
(EXIT) // BRF + 2 Jumps past this exit
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i < 1000

i < 100

Print "Yes" Print "No"

i ++

Loop Header

No

Yes

Yes

No

Exit Loop

Guard

Trace Start

Figure 1: Example of a compiled trace. All recorded instructions
are compiled into machine code as straight line code. Guard in-
structions are inserted where the control flow potentially changes.

(op_DROP_SearchScope_PrintObject)
(EXIT)

The IF EXIT THEN is converted to a branch if false statement.
The last EXIT in the implementation is added because there is an
implicit EXIT for all Forth words that are called. The word must re-
turn to the point in the program that called the word. This is similar
to a method call/return pair in other programming languages.

5. Trace Compilation and Trace Trees
Trace-based compilation is a novel compilation technique espe-
cially applicable to dynamically typed languages. Tracing is a
mixed-mode execution environment in which bytecode is initially
interpreted, and only frequently executed (“hot”) code is compiled.
To detect such “hot” code regions that are suitable candidates for
dynamic compilation, we use a simple heuristic where the in-
terpreter keeps track of backward branches. The targets of such
branches are mostly loop headers. For each target of a backward
branch, there exists a counter that tracks how often this backward
branch has been taken. When the counter exceeds a certain thresh-
old, a loop header has been discovered.

The interpreter then enters “trace recording” mode, i.e. it
records the instruction path subsequently taken, starting with the
loop header. During trace recording, metadata of the ongoing pro-
gram execution are stored, such as the current program counter and
the state of local variables. If the recorded path leads back to the
loop header, then a path has been recorded. This is called an initial
“trace” through the loop.

Consider the example in Figure 1, which is the resulting trace
of a while loop. Trace recording begins at the header of the loop
and continues until the loop header is reached again. The check to
ensure that i < 100 is compiled as a guard instruction. The rest of
the loop is inlined and compiled as straight line code since control
flow does not diverge within a trace.

Forward branches inside a trace indicate alternative paths that
may not yet have been discovered by our compiler. Branches to
potential paths that were not detected during trace recording are
compiled into guard instructions. A guard instruction is a check to
ensure that the condition encountered during trace recording is still

i < 1000

i < 100

Print "Yes" Print "No"

i ++

Loop Header

No

Yes

Yes

No

Exit Loop

Guard

Trace Start

(a) Trace linking

i < 1000

i < 100

Print "Yes" Print "No"

i ++

Loop Header

No

Yes

Yes

No

Exit Loop

Guard

Trace Start

(b) Trace trees

Figure 2: The difference between trace linking and trace trees.
Trace linking jumps in between individual trace fragments. Trace
trees attach other traces where they diverge in control flow so that
they are optimized together as a whole.

the same. Failure of a guard means that the program has arrived at
a path that has not yet been compiled. This is called a “side exit”
from the loop. In the case of a side exit, the compiled machine
bailout code restores the interpreter state and hands control back
to the interpreter. Since returning control back to the interpreter
can be expensive, the alternative path that led to the side exit
should be compiled as well if it is frequently executed. To handle
these scenarios, interpretation resumes at the taken side exit, and
the trace recorder continues recording instructions starting at the
side exit location. These secondary traces are completed when
the interpreter revisits the original loop header. This results in a
collection of traces, spanning all observed paths through the “hot”
code region.

5.1 Organizing Traces
There are three distinct methods of trace compilation: 1) trace
fragments, 2) trace linking, and 3) trace trees. With trace fragments,
each trace is completely independent of every other trace. No trace
is aware of any other trace, and cannot use the context of when
it was traced for machine code optimization purposes. Individual
traces have the disadvantage of containing a lot of bailout code to
restore state back to the interpreter. Bailout code can account for
up to 80% of the total amount of generated machine code. A better
solution is to connect the traces together if they meet at the same
point in the program.

Consider the case where we wish to connect two traces: trace
A jumps to trace B. Each individual trace must have code to first
save the interpreter state and restore the interpreter prior to leaving
the trace. Therefore, trace A saves state, executes, and restores
state back to the interpreter. The interpreter then jumps to trace B,
which also has to save state, execute, and restore state. Performance
would be significantly better if trace A saves the interpreter state
prior to execution, executes the trace, jumps to the machine code
trace B, and allows trace B to restore the interpreter state when a
side exit occurs. Trace linking extends trace fragments and exploits
this optimization. Trace linking allows traces to call other traces
without returning back to the interpreter, with execution staying in
optimized machine code.
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In contrast, a trace tree is a collection of traces that share
the same entry point. A trace tree can only occur when traces
originate at the same entry point in the program such as a while loop
header. Trace linking can jump to traces wherever they connect,
not necessarily at a loop header. The important distinction between
trace linking and trace trees is that trace linking allows individual
traces to call other traces, but each individual trace is compiled as
an independent entity. Compiler optimizations are only applied to
that one specific trace. Trace trees allow all traces to be compiled
as a whole, enabling a larger view of the code and therefore better
optimizations.

5.2 Type Specialization via Traces
One of the challenges of compiling dynamically typed languages
is that there are numerous run-time checks, mostly on types and
for method dispatch, which results in poor performance. Tradition-
ally, type information has been stored either statically or by boxing
and unboxing objects. Boxing refers to wrapping type information
around an object, while unboxing refers to reading the type infor-
mation and parsing the data as that type. This is useful in the case of
adding a level of abstraction to the opcodes and lazily discovering
the type of an object. However, there is a performance penalty for
boxing. Types of objects usually do not change in most real world
code. This observation was shown to be true for object receiver
types by Garret et al. [14] in SELF, C++, and Cecil. It has also
been our albeit anecdotal experience when dealing with user gen-
erated code. We use the phrase “type stability” to refer to the types
of objects not changing during program execution, and exploit this
fact to heavily optimize machine code. Type specialization refers
to compiling code assuming specific types for objects.

Tracing has the intrinsic property of type specialization and
method dispatch resolution for free. At trace recording time, the
interpreter knows the type of an object at that point in the program.
Whether it is an integer or a user defined type, trace compilation
exploits “type stability” to generate machine code assuming the
types remain the same during execution. For example, if we add
two objects and both are integers during trace recording, we can
compile the code with a native integer addition and a guard for an
integer overflow. By assuming that most objects do not change their
type during execution, we can achieve a significant performance
increase by utilizing that type information for aggressive code
optimization, compiling untyped code as typed code, and inserting
guards when needed to ensure that object types have not changed.

In case of a static method invocation, the target method is fixed
and no additional run-time checks are required. For dynamically
dispatched methods where the callee’s object type is unknown, the
trace recorder inserts a guard instruction to ensure that the same ac-
tual method implementation that was found during trace recording
is executed. If the guard fails because the actual callee method is
not the same, control returns back to the interpreter. If the guard
succeeds, we have effectively performed method callee specializa-
tion, removing the overhead required for a method dispatch on an
unknown type. Since tracing can handle multiple alternative paths,
eventually the trace compiler specializes method invocations for all
commonly occurring callee object types. Finally, we can extend this
concept one step further and specialize not only on method dispatch
callee types, but on the actual types of the method parameters.

5.3 Compiling Traces
Instead of directly compiling Forth, the trace recorder in Tamarin-
Tracing translates the Forth instructions to a low-level intermediate
representation (LIR). The LIR instructions actually become the IR
for optimization, and finally machine code. Super Words are bro-
ken down into their individual primitive words and are translated to

LIR instructions during trace recording. LIR is in static single as-
signment (SSA) form [10] with LIR references pointing to values.

One interesting aspect is that the phi nodes do not need to write
values upon leaving SSA form. Phi nodes indicate that a variable
has been changed at a merge point in a control flow graph. Traces
are straight line sections of code, so control flow can merge only
at the backward branch at the end of the traced loop. One imple-
mentation of traces would be to have phi nodes for the variables
that changed inside the loop and generate code at the beginning
and end of a trace to read/write variable values in the correct place.
Tamarin-Tracing does not require this code, but uses the Forth data
stack. Instead of reading variable data at the beginning of the loop,
Tamarin-Tracing reads the Forth stack location of the variable and
directly operates on the Forth stack in machine code. When the
execution exits machine code, there is no need to restore variable
values into a specific location. Tamarin-Tracing performs optimiza-
tions on recorded code with constant folding during actual trace
recording time, and common subexpression elimination and redun-
dant store elimination on the LIR.

Tamarin-Tracing can use either trace linking or trace trees. With
trace linking, the trace recorder begins recording from the side exit
point when a side exit occurs. If the trace recorder successfully
records a hot side exit, the trace is compiled into machine code,
and the pointer to the newly compiled code is returned to the side
exit. The side exit patches a jump to the newly recorded trace. The
link between the two traces is now complete, with one trace exiting
to the side code, which then jumps to the other trace fragment.
This transition is all in machine code without the need to return to
the interpreter. Trace trees require the whole tree to be recompiled
in order to take advantage of the context for both traces. Trace
recording occurs because of a hot side exit. Instead of having the
side exit patch a jump to the new trace, both the trace where the side
exit occurred and the newly recorded trace are compiled together.
Throwing away the old machine code and recompiling the whole
tree allows for faster machine code as we can optimize both traces
within the context of each other.

One important optimization where Tamarin-Tracing can gain
impressive performance increases is type specialization. During
interpretation, objects are boxed and unboxed into 64 bit “atoms”
with the upper 32 bits containing type information and the lower 32
bits as the actual value. In our implementation, compiled code still
boxes and unboxes atoms at most operations. Only some boxing
and unboxing operation pairs are optimized away through common
subexpression elimination in SSA form, but boxing and unboxing
actions still occur within the loop code. An additional significant
performance optimization would be to be more aggressive in type
specialization, i.e. to leave atoms unboxed in machine code and
rebox them prior to returning to the interpreter.

5.4 Merge Nodes
One problem with traces is the amount of duplicate code in a trace.
If multiple traces flow through the same program path, the code for
the path is duplicated. In order to reduce code size, we use merge
nodes. A merge node is where two predecessors in the control-flow
graph both jump to the same location. The trace representing the
merge point in the control flow graph is known as a merge node.

Consider the example in Figure 3. The trace fragments 1 and 2
diverge in program control flow, but both merge at the point the
if/else statement ends. When trace fragment 2 is being recorded, the
recorder knows that both fragments 1 and 2 have the code where the
if/else statement ends in their trace. Instead of duplicating this code
into trace fragment 2, the merge point becomes its own independent
fragment, which is called a merge node. The machine code of
trace fragment 2 jumps to the newly created merge node. From the
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Loop Header

i < 1000 Exit Loop
NoYes

i < 100

Print "No"

NoYes

Print "Yes"

i++

Guard

Trace Start

Trace Merge

Trace 1

Trace 2

Figure 3: Merge nodes are located where two nodes in the control-
flow graph both flow to the same location. This merge node is
compiled into its own trace, and the two predecessor traces jump
to the newly compiled trace.

var i, iLess20, iLess40, elseState = 0;

for (i = 0; i < 100; i++) {
if (i < 20) { iLess20 = i; }

if (i < 40) { iLess40 = i; }
else { elseState = i; }

}

Figure 4: Example source code used in Tamarin-Tracing execution
example.

compiler’s perspective, the merge node is exactly the same as any
other trace.

Trace fragment 1 is not recompiled to jump directly to the merge
node, and contains the merge node in its own duplicated code.
We do not recompile fragments since it is too expensive in our
target environment. All further traces that follow the same control
flow call the merge node. Therefore, the code savings emerge from
the second, third, etc, compiled traces. It is a configurable option
when merge nodes are created in Tamarin-Tracing. The default
configuration is to only compile a merge node when a third trace is
detected. We chose the third trace as a balance between compilation
time and space.

6. Example of Tamarin-Tracing Execution
Gluing all the different components of Tamarin-Tracing together
is a comprehensive task. This section aims to provide a concrete
example of what occurs from the point of ActionScript bytecode
until machine code is executed. We start by taking a look at ABC
and how it is converted to Forth. We then examine what is traced

when the code gets hot, show the LIR that is generated during trace
recording, and finally show the generated machine code. Consider
the source code in Figure 4, specifically the if statement construct
testing the condition i < 20. A flowchart depicting the whole
process of converting ActionScript 3 to x86 instructions is shown
in Figure 5.

Consider the ActionScript bytecode that is generated for the Ac-
tionScript3 i<20. The first opcode getslot represents an access
to a local variable. Local variable numbers are known at compile
time, and are therefore associated with dedicated memory locations
called slots. The ActionScript variable i is given slot number 1. The
second opcode pushbyte reads a number from the file and pushes
it onto the virtual ActionScript stack. The third opcode ifge rep-
resents comparison and conditional jump if greater or equal. If the
condition is true, control flow jumps to opcode 51.

These three ActionScript bytecodes are then converted to Forth
at run time. The ABC getslot 1 becomes the Forth sequence of
a literal constant 1, followed by a fetch to get the boxed value of
that slot location. The ABC pushbyte 20 becomes the Forth word
Constant 20. The number 20 is then pushed onto the Forth data
stack. The Forth word Integer Box takes the value on the top of
the data stack, and boxes it to become an integer. The Forth word
iflt checks the ActionScript condition i < 20 and pushes the result
onto the Forth data stack. Branch False checks the condition on top
of the Forth data stack and branches to the specific address if the
result of iflt is false.

When the loop is hot enough, in our case once a backwards
branch has been taken 10 times, the ActionScript variable i is 10.
The trace recorder inlines the ActionScript statements where i <
20. During tracing, the actually executed Forth words are converted
to LIR. The LIR does not contain the branch anymore, but uses a
guard instruction to ensure that i < 20.

An object that contains pointers to all the local variables is on
top of the Forth stack. The LIR opcode loadQuadWord (ldq1)
reads the C address of the object from the Forth data stack. The
LIR variable is named ldq1 because LIR is in SSA form and this
is the first instance of ldq. Each object on the Forth stack is boxed
as a 64 bit word with the top 32 bits as type information and the
bottom 32 bits as the actual data in binary form. loadLowerQuad-
Word (qlo) reads the lower 32 bits from a boxed item, and stores
that value in qlo1. The getSlotvalueBox (svb) gets the local vari-
able from the object address located in qlo1 and fetches an object
located in slot 1. The newly read object is then unboxed as an in-
teger, with the result being stored in svb1. We now have the value
of the ActionScript variable i. lessThan (lt1) checks that svb1
is less than 20, which is the ActionScript condition i < 20. Note
that instead of storing the number 20 in a variable, it is used as an
immediate operand in the lessThan instruction.

Finally, TraceExitIfFalse (xf4) is an example of a guard in-
struction. The lessThan guards the ActionScript condition i < 20.
LIR TraceExitIfFalse ensures that this value is true, otherwise the
trace is exited. It exits to location 51, which is the jump target of the
original ABC jump bytecode. The LIR is now optimized, and phys-
ical registers are assigned to the operands by the register allocator.
The sequence of LIR is compiled to x86 instructions.

The value qlo1 is stored into a register, and a native call to a C
function getSlotvalueBox is executed. The value of that function
is returned in EAX, which is the integer value of the ActionScript
variable i. Then the returned value is compared to the number 20.
If the condition i < 20 is false, there is a jump to bailout code that
restores the state back to the Forth interpreter.

This same process is done for the whole trace. We can see
the whole execution of the example source code and the resulting
compiled traces in Figure 6. The first trace is “Trace 6” representing
the control flow where the ActionScript condition i < 20 is true.
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getslot 1

pushbyte 20

IFGE

Constant 1

GetSlot Boxed

Constant 20

Integer Box

IFLT

Branch False

ForthABC

ldq1 (loadQuadWord): scopeObject

qlo1 (loadLowerQuadWord): ldq1

svb1 (getSlotValueBox): qlo1, slot 1

lt1 (less than): svb1, 20

xf4 (exit trace false): lt1

LIR

mov ‐8(ebp), qlo1

eax = call getSlotValueBox 

cmp eax (svb1), 20

jnl 0x58c23a1

x86

if (i < 20)

AS3

Figure 5: Flowchart of ActionScript 3 source to x86 machine code. Optimizations are applied during the translation of Forth to LIR.

Figure 6: A visualization of traces, where side exits occur, and how
traces are linked together. Side exit id 5 occurs when i == 20.
Side exit id 37 occurs when variable id == 40. Finally two merge
nodes are created. One merge node contains i++ while the other
checks the loop condition i < 100.

When i == 20, a side exit occurs, which in this case is side exit id
number 5.

Trace recording begins again from the side exit location, com-
piling the path ignoring the block where i < 20 and compiling the
statement where i < 40, which is iLess40 = i. Compiling this
trace eventually reaches back to the main loop header with side exit
id 5 jumping back to “Trace 6”. Once i == 40, we again exit the
trace at side exit id 37. However, we now have two merge node
conditions.

Adobe Flex compiles loop checks at the end of the loop with
two basic blocks. Once the loop body finishes, control flow jumps
to the first basic block that contains the ActionScript code i++.
The second basic block contains the actual loop condition i <
100. Therefore, “Merge Node 2” contains the code to increment

and set the ActionScript variable i. “Merge Node 3” is the loop
condition. When side exit 37 occurs, trace recording compiles both
of these basic blocks as independent fragments, i.e. independent
merge nodes. Side exit 37 calls “Merge Node 2”, which jumps to
“Merge Node 3”, and finally “Merge Node 3” has reached the same
point in program flow as “Trace 6”.

During our explanation of merge nodes, we stated that a merge
node occurs when two traces meet at a point in the control flow.
This is our criteria for detecting merge nodes, but Tamarin-Tracing
by default does not compile a merge node when two traces share the
same merge point. Instead, Tamarin-Tracing waits for a third trace
to occur prior to compiling the merge node. Hence, in the earlier
example, a merge node could have been formed once the first side
exit occurred. The first side exit duplicated the i++ and while loop
condition inside its own trace. Once the second side exit occurred,
the merge nodes were generated.

7. Results
We evaluate our implementation using Apple’s SunSpider [27]
benchmark. We compare Tamarin-Tracing to three other JavaScript
virtual machines: Tamarin-Central [23], which is the current Ac-
tionScript virtual machine in Adobe Flash; SquirrelFish [28], the
virtual machine in Apple’s Safari; and SpiderMonkey 1.8 [22], the
current JavaScript implementation in Mozilla Firefox 3.0. All tests
were done with RELEASE builds, or in the case of SpiderMon-
key, with optimizations enabled. The benchmarks were run on a
MacBook Pro 2.4 Ghz with 4 GByte of memory running Mac OS
X Leopard 10.5.4. Performance is evaluated by calling getTime(),
which returns a UNIX timestamp. This method is called prior to
running the SunSpider test, again calling getTime() at the end of
the test, and subtracting the start time from the end time.

Figure 7 shows the results of the performance measurements.
The baseline is Tamarin-Tracing’s interpreter where tracing is dis-
abled, i.e. where no JIT compilation occurs. Considering Tamarin-
Tracing and Tamarin-Central both have JIT compilers, SquirrelFish
outperforms all available implementations on most of the tests.
Both SquirrelFish and SpiderMonkey have a small number of com-
plex opcodes that do a lot of work, which gives them a significant
performance advantage as the overhead of the interpreter dispatch
is minimized. SquirrelFish is a direct threaded interpreter, while
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Figure 10: Performance of Tamarin-Tracing typed vs. untyped code.

SpiderMonkey is an indirect threaded interpreter. Dispatch is es-
pecially important as SunSpider benchmarks run only for tens of
milliseconds. For example, in crypto-md5, s3d-cube, date-format-
xparb, and crypto-aes, Tamarin-Tracing is the slowest implemen-
tation. In crypto-aes and s3d-raytrace, Tamarin-Tracing is slower
than Tamarin-Central.

The slow performance for these tests is in large part due to the
fact that much time is spent in the interpreter. Figure 8 shows
the percentage of time spent executing compiled traces, compiling
traces, and in the interpreter. These numbers exclude the startup
costs. Due to the results, we believe having semantically complex
opcodes to increase interpreter performance is the proper method
of building a JavaScript Tracing compiler.

However, the performance results also gives insight into the po-
tential for tracing, despite the overhead of the interpreter. Tamarin-
Tracing shows a good performance beating or matching Squir-
relFish in bitops-3bit-in-byte, crypto-sha1, s3d-morph, math-spectral-
norm, and math-cordic. In bitops-3bit-in-byte, Tamarin-Tracing
is the fastest implementation, and is 116% faster than Tamarin-
Central. In about half of the tests, Tamarin-Tracing performs better
than SpiderMonkey. We can also see that in these benchmarks, a
large percentage of execution time is within a trace.

While string tests such as string-validate-input and string-fasta
are executed within traces, Tamarin-Tracing is still behind its com-
petitors. This is due to the overhead of the internal string repre-
sentation and is a known performance bottleneck. Thus while trac-
ing is able to achieve a significant performance improvement, the
interpreter is the bottleneck for overall performance. In our cur-
rent implementation, the dispatch is too expensive due to indirect
threading and the simplicity of the Forth words. Another dispatch
technique could speed up the Forth interpreter. However, since a
small code size is a requirement, implementing direct threading is
not a viable option.

We can also see the limits of a traditional compiler in Tamarin-
Central. Tamarin-Central compiles a method the first time it is
called, and works specifically on atoms in machine code. This
means that everything is boxed/unboxed in machine code. While it
is still faster than an interpreter, the limits of compiling dynamically
typed code without traces is evident.

Figure 9 compares Tamarin-Tracing performance when com-
piling with trace linking versus trace trees. The performance is
roughly the same on most of the tests because the code is not par-
ticularly branch heavy, and most of the code is linear. When code
is branch heavy, such as in s3d-cube and s3d-raytrace, the amount
of time necessary for recompiling the whole tree after every branch
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is added to a trace tree voids any gain that can be reached by better
optimized machine code. We will examine ways of reducing this
overhead in our future work.

Figure 10 shows the performance of Tamarin-Tracing with
typed versus untyped code. To introduce static typing, we changed
the benchmark source code and use features that are available in
ActionScript 3, but not in JavaScript. The performance increase of
static typing ranges from none at all to 7.5x faster as the case with
bitops-bitwise-and. It shows the upper bound of speedup that could
be achieved by Tamarin-Tracing if it eliminated all dynamic type
checks from the compiled code. If we would specialize traces more
aggressively, we could expect this performance increase in untyped
code. We could not compare typed code results to SpiderMonkey
or SquirrelFish because they support only standard JavaScript.

8. Related Work
Dynamically typed languages have traditionally been implemented
with interpretation. However, the need for increased performance
has led to a wide range of compilers for these languages includ-
ing Python, Ruby, and PHP. Most optimized implementations of
dynamic languages are based on existing virtual machines such as
Java or .NET, i.e. they generate statically typed bytecodes that sim-
ulate dynamic typing. Other than Tamarin and TraceMonkey [18],
we are not aware of other existing JIT compilers built directly and
specifically for JavaScript. Mozilla SpiderMonkey [22] is a pure in-
terpreter, SquirrelFish [28] is a fast interpreter used in Safari from
Apple, but still an interpreter. JScript [20] is Microsoft’s imple-
mentation of JavaScript, but traditional JScript uses an interpreter.
JScript.NET again uses the .NET runtime to compile code.

The idea of running traces to specialize on hot path code has
been explored before in the binary rewriting system Dynamo [6].
It utilizes run-time information to find hot paths, and optimizes
machine code based on these hot paths. Dynamo compiles only
single traces, and utilizes trace linking to link traces together if
possible. Tamarin-Tracing has the option to take a similar approach,
even utilizing some of the same terminology such as fragments
that only start at a backward branch. Tamarin-Tracing also extends
Dynamo by having the option of compiling trace trees.

Tracing as a means to speedup interpretation is proposed by
Zaleski et al. [30] with their YETI system. YETI identifies regions
of hot code, which can be either methods, partial methods, or traces
and compiles these hot regions into machine code. Their interpreter
then calls these compiled regions of hot code. Tamarin-Tracing
only detects hot regions via traces, and inlines any portion of a
method that may be found during trace recording.

Traces were extended with the concept of trace trees by Gal et
al. [13]. Instead of connecting individual traces to each other at
end of a trace with each fragment being independent of each other,
trace trees allow traces to be attached to other traces as long as they
connect to a loop header. Tamarin-Tracing also supports this feature
with a command line switch. Lua JIT [25] is starting to explore
trace-based compilation for the lua programming language.

Ertl et al. [12] extensively studied the performance and im-
plementation of efficient interpreters, comparing the performance
of various interpreter dispatch techniques. They found that direct
threaded [7] dispatch is the most efficient. The work of Shi et
al. [26] reduced the number of interpreted instructions by convert-
ing stack based code to a register based representation. SquirrelFish
uses these two techniques to achieve a significant performance in-
crease in their interpreter, and is something we are looking to add
to Tamarin.

Type inference has previously been studied extensively, with
many algorithms to statically derive the types of specific variables.
Type inference to statically check for type errors is explored by
Thatte [29], and further extended in [21] by adding a universal

type. Adding a type system has been previously proposed in object
oriented languages such as Smalltalk [15]. Agesen et al. [4] stud-
ied type inference in the prototype-based language SELF. Aiken et
al. [5] investigated the use of type inference to improve the perfor-
mance of dynamically typed languages through the use of abstract
interpretation [9, 24]. Our solution differs in that we use concrete
type information that is observed during actual program execution,
and assume type stability in the compiled trace code. If the type
changes, which rarely occurs in real-world programs, we can just
speculate again on the new type.

Using concrete type information to optimize compiled code has
been studied in other dynamically typed languages. Chambers et
al. [8] customized methods based on the callee type of a procedure,
creating multiple copies of optimized machine code for each callee
type. This is similar to our method invocation type specialization,
except that we can also specialize on method parameter types,
not just the callee type. Hölzle et al. [17] developed a system
of using run-time feedback-based method specialization in SELF
by profiling the running application and recording the callee of
a method dispatch. The difference with tracing is that method
specialization is done in one step by trace recording, without the
need of an extra profiling phase. Hölzle et al. [16] introduced
“polymorphic inline caches” that cache all observed callee types.
Our technique can apply the same principles by compiling multiple
traces, with each trace compiled with one callee type.

9. Future Work
As the benchmark results show, a fast interpreter is essential to a
high performance JavaScript virtual machine. Tracing has huge po-
tential, but it cannot overcome the penalties of using a slow in-
terpreter. In our next implementation, we will be taking Tamarin-
Central and converting it to a direct-threaded interpreter. Tamarin-
Central has more complex opcodes and a much faster interpreter
than Tamarin-Tracing. The Tamarin-Central interpreter is already at
least 50% faster when adding direct threading. We will incorporate
a tracing-jit into Tamarin-Central, and follow aggressive type spe-
cialization instead of boxing/unboxing objects in a trace. We also
plan to switch our tracing methodology by going away from tracing
specific opcodes as a whole, as we do in Tamarin-Tracing, to trac-
ing specific portions of a complex opcode. Finally, we will also add
a tracing compiler to SpiderMonkey, in a project called TraceMon-
key [18]. SpiderMonkey has complex opcodes and an even faster
baseline interpreter than Tamarin-Central.

10. Conclusions
In this paper, we explored a trace-based JavaScript compiler. We
had impressive performance results compared to Tamarin-Central,
which shows the potential of tracing. However, when programs run
only for a few milliseconds, a fast interpreter is crucial. Tamarin-
Tracing answered the question: What granularity should an opcode
be as it relates to tracing? Can trace compilation overcome the
overhead of a slow interpreter? That answer is “no” for typical
JavaScript web applications. Trace compilation has an enormous
amount of potential by exploiting type stability. Therefore, in order
to unlock the performance that tracing can provide, the interpreter
needs complex opcodes and the trace compiler needs to trace and
compile through specific portions of an opcode.
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