
Trace-Based Compilation in Execution Environments
without Interpreters

Michael Bebenita Mason Chang Gregor Wagner Andreas Gal
Christian Wimmer Michael Franz

Department of Computer Science
University of California, Irvine

{mbebenit, changm, wagnerg, gal, cwimmer, franz}@uci.edu

Abstract
Trace-based compilation is a technique used in managed language
runtimes to detect and compile frequently executed program paths.
The goal is to reduce compilation time and improve code quality
by only considering “hot” parts of methods for compilation. Trace
compilation is well suited for interpreter-based execution environ-
ments because the control flow of an application program is highly
visible and recordable. In this paper, we show that trace compila-
tion is also feasible and beneficial in runtime environments without
interpreters where it is more difficult to monitor the control flow of
an application.

We present the implementation of Maxpath, a trace-based Java
just-in-time compiler for the meta-circular Maxine virtual machine.
Maxine uses a tiered compilation strategy where methods are first
compiled with a non-optimizing just-in-time compiler in order to
collect profiling information, and then recompiled with an optimiz-
ing compiler for long-term efficient execution. We record traces
by dynamically inserting instrumentation code in non-optimized
methods. Execution traces are first collected into trace regions, af-
ter which they are compiled, optimized and linked to non-optimized
methods for efficient execution. We show that trace-based compi-
lation is an effective way to focus scarce compilation resources on
performance critical application regions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, just-in-time compilation, trace-based compila-
tion, SSA form, optimization, trace regions

1. Introduction
The popularity of virtual execution environments has risen dramat-
ically with the advent of the Java virtual machine. Benefits such as
automatic memory management, platform independence and mem-
ory safety have helped to make the virtual machine (VM) the exe-
cution model of choice. Java, C#, JavaScript, Python, and PHP are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’10, September 15–17, 2010, Vienna, Austria.
Copyright c© 2010 ACM 978-1-4503-0269-2. . . $10.00

among the most popular programming languages in use today, all
of which rely on VM support.

Early Java virtual machines (JVMs) relied on interpretation
for the execution of bytecodes. This is due to the fact that in-
terpreters are relatively easier to write and debug than compilers.
However, even the most sophisticated interpreters lag in perfor-
mance compared to natively compiled code. As JVMs matured,
just-in-time compilation was introduced to boost the performance
of Java applications. Just-in-time compilers invest some compila-
tion time upfront, hoping to recuperate that cost by generating more
efficient code, and thus saving time in the long run. Many state of
the art VMs, such as the Java HotSpotTM VM, use a hybrid ex-
ecution strategy. Code that is assumed to execute rarely is inter-
preted. After some time, the optimizing just-in-time compiler kicks
in and compiles performance critical regions in order to boost per-
formance.

One of the main advantages of a virtual execution environment
is introspection. By inspecting the hosted application, a Java vir-
tual machine can adapt to its runtime behavior. This allows a just-
in-time compiler to perform many feedback directed optimizations
which are not possible in a static setting. Feedback directed op-
timizations [1] such as deep inlining and the de-virtualization of
dynamic methods are crucial to Java performance.

Unfortunately, just-in-time compilers used in VMs are often
quite similar in structure to their static counterparts. In case of
static compilation, the compiler processes the program code one
method at a time, constructing a control-flow graph (CFG) for each
method, and performing a series of optimization steps based on this
graph. Just-in-time compilers behave similarly, with the distinction
that they only process methods that are considered important for
performance.

In a static compiler, using methods as compilation units is a
natural choice. In static compilation there is usually no profiling
information available that could reveal whether any particular part
of a method is “hotter” and thus more “compilation worthy” than
another. In a static compiler it actually makes perfect sense to al-
ways compile entire methods and all possible paths through them,
since compilation time is not very important. In contrast to its static
counterpart, a just-in-time compiler has access to runtime profile
information that can be collected by the VM during interpretation.
With this profiling information, the just-in-time compiler can de-
cide which parts of a method actually contribute to the overall run-
time, and which parts are rarely taken and are in fact irrelevant from
a global perspective as far as optimization potential is concerned.
In short, a just-in-time compiler can optimize only frequently taken
execution paths (trace-based compilation).

In this work, we present the design and implementation of Max-
path, a complete trace-based just-in-time compiler for the Max-

59

ine VM [12]. Unlike other VMs where trace-based compilers have
been implemented, Maxine does not use an interpreter at all. In-
stead, it relies on a lightweight non-optimizing just-in-time com-
piler for the initial execution of Java bytecode. The execution per-
formance of this type of just-in-time compiler is relatively good,
much faster than that of a traditional interpreter. The design of Max-
ine presents two challenges to trace-based compilation: 1) record-
ing and controlling execution of a compiled code is significantly
more difficult than in an interpreter, and 2) since the performance
difference between the baseline non-optimizing just-in-time and
the optimizing compiler is smaller than it is in a mixed-mode in-
terpreted environment, the trace-based compiler needs to be more
aggressive in finding compilation-worthy regions in order to pay
back compilation cost or any incurred overhead.

This paper makes the following contributions:

• Identification and recording of frequently executed code traces
using instrumentation in execution environments without inter-
preters.

• An efficient control transfer mechanism for executing and re-
turning from traces.

• A design strategy for retrofitting a Java virtual machine with a
traced based compiler.

The remainder of this paper is organized as follows: Section 2
provides a general overview of trace-based compilation and intro-
duces the concept of trace regions which we use to capture and
compile frequently executed code regions. In Section 3 we describe
Maxpath, the implementation of our trace-based compiler for the
Maxine VM. In Section 4 we evaluate Maxpath on a set of bench-
marks. Related work is discussed in Section 5. The paper ends with
an outlook on future work and conclusions in Section 6.

2. Trace-Based Compilation
Trace-based compilers rely on profiling information collected by
the VM to detect and compile performance critical application frag-
ments; the most primitive of which is a single linear code path, or
an execution trace. Unlike most just-in-time compilers that oper-
ate at the method level, trace-based compilers delve in deeper into
the control-flow of a method, they profile the execution of program
paths. The ultimate goal is to capture the smallest set of execu-
tion traces that are representative of the dynamic behavior of the
application. Doing so, a trace-based compiler can focus all of its
optimization budget on a tiny, yet very important part of an ap-
plication. Because a trace-based compiler is only concerned with
execution traces, it is free to ignore the method as the principal
compilation unit. Methods are purely language constructs, and are
often not the optimal way of partitioning an application. By pro-
filing and completely disregarding method boundaries, trace-based
compilers can effectively infer compilation-worthy regions that can
sometimes even span multiple methods.

2.1 Discovering Hot Program Regions
Bala et al. [2] proposed a very effective, yet simple, way of detect-
ing hot program regions in their Dynamo system. Execution coun-
ters are used to count the number of backward branches taken at
runtime. If this number exceeds a certain threshold, the target of the
branch instruction is considered a frequently executed loop header,
and naturally all instructions within the loop are presumed to be
hot as well. Certainly this is not always the case, often times cold
code, or even warm code that deals with corner cases appears in
hot loop regions. In order to exclude such code from compilation,
dynamic path profiling is used to detect which program paths are
more frequently executed than others.

Previous work on path profiling by Ball [3] investigated ways in
which information about path execution frequency can be collected
and used in tuning performance. In that work, path profiling was
accumulated over complete runs of an application. Therefore, any
performance benefits would only apply to subsequent compilations
and executions of an application.

Collecting accurate path profiling information in the context of
a just-in-time compiler is complicated by the fact that only a small
fraction of the application behavior is observed. Precise path pro-
filing information would be worthless to a just-in-time compiler
if it were only made available when the application terminated.
Therefore, for path profiling information to be useful, it must be
made available early on, when the just-in-time compiler can actu-
ally make use of it.

Our Maxpath trace-based compiler performs path profiling by
sampling the execution of program paths within hot loop regions.
Hot loop regions are detected by instrumenting the execution of
the targets of backward branches, much in the same way Dynamo
detects hot loop regions. During trace sampling, Maxpath records
program traces and assembles them into larger structures called
trace regions. The growth of trace regions is guided by various
heuristics. Once a trace region has matured, no further traces are
accumulated. The trace region is then optimized and linked in for
future execution.

2.2 Detecting Loop Headers (Anchors)
Previous work on trace-based compilation in the Hotpath VM [6]
used dynamic loop header discovery. Hotpath detected loop head-
ers by monitoring the execution frequency of backward branches
using a Java interpreter. Once the execution frequency exceeded
a given threshold, the branch target would be considered a hot
loop header. Hotpath would then begin recording traces starting at
the loop header, and continue recording until the loop header was
reached again.

We found that this approach does not scale well. First of all, not
all backward branch targets are loop headers. The loop detection
method used in Hotpath may incorrectly classify some branch
targets as loop headers. Secondly, and most importantly, not having
a clear view of the loop structure of a method may lead to the
construction of sub-optimal trace regions.

Consider the behavior of Hotpath in the following example:

for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {

// inner loop body
}
// outer loop body

}

In this example, the inner loop header is discovered first since it
is executed more frequently than the outer loop header. Traces that
cover the inner loop body are then recorded. As additional traces
are accumulated, some may escape into the outer loop scope and
connect back to the inner loop header. This would have the negative
effect of polluting the recorded trace region with the cold code that
appears in the outer loop header, leading to poor code quality.

The approach we are taking in Maxpath is to perform a static
loop analysis phase as a preprocessing step during class loading.
Loop header information can be collected essentially for free dur-
ing bytecode verification. This allows us to guide the growth of
trace regions so that they do not escape block scopes. An additional
reason for this design choice is that unlike other interpreter-based
trace compilers, Maxpath relies on code instrumentation for profil-
ing and trace recording. Instrumenting branch instructions, rather
than branch targets, is more difficult and requires more instrumen-

60

tation code since branch instructions more frequent than branch tar-
gets.

2.3 Trace Formations
Trace A trace is a sequence of successive instructions or ba-
sic blocks observed during the execution of a program. Since a
trace contains only one observed execution path, off-trace ba-
sic blocks are considered to be trace exit points. During the
execution of a trace, if an exit point is reached, control falls
back on the interpreter, or in our case, control is transferred
to the non-optimizing just-in-time compiler. Figure 1 shows the
control-flow graph of a method with two nested loops. The in-
ner loop contains a call to a method named bar(). A possible
trace through this control-flow graph starting at basic block B1

is {B1, B2, B4, B9, B11, B12, B
′
4, B5, B6} as shown in Figure 2.

The trace includes 9 basic blocks and partially inlines the bar()
method. (Block B′

4 represents the code region following the call
instruction in the original B4, shown here for clarity as it would
normally be appended to block B12). Blocks B7, B3, B10, B2, B8

are off-trace basic blocks, or exit points.

Trace Trees A trace tree is a collection of connected traces, cov-
ering multiple program paths. Each trace in a trace tree starts and
ends at the same program location, namely the trace tree anchor,
or loop header. Therefore, a trace tree is essentially a collection of
cyclic traces that are all rooted at the same point. Figure 3 shows
the growth of a trace tree anchored at basic block B2, the inner loop
header. The left-most trace is the first trace to be added to the trace
tree. The second trace includes basic block B10, which appears in
the inlined method, and tail duplicates blocks {B12, B

′
4, B5}. Two

additional traces are attached to cover more and more of the original
control-flow. The primary advantage of trace trees is that they do
not contain basic blocks that join control-flow (with the exception
of the first basic block). The lack of control-flow join nodes simpli-
fies many compiler optimizations, making trace trees attractive to
just-in-time compilers that have a limited compilation budget.

Trace trees were first introduced in the Hotpath VM, and later
used in the Spur project by Bebenita et al. [4]. These projects
have focused primarily on small kernel-based, numerically inten-
sive benchmarks, and have not attempted to run large-scale bench-
marks. Our goal with Maxpath is to provide a full, and complete
implementation of a trace-based compiler, where we can measure
trace compilation in much larger applications.

Unfortunately, in large programs, excessive tail duplication can
lead to code explosion, making trace trees unviable. Consider the
following pathological example where all 256 possible control-flow
paths are taken, causing a trace tree to grow to have 256 branches.

for (int i = 0; i < 256; i++) {
if ((i & 1) != 0) { ... }
if ((i & 2) != 0) { ... }
if ((i & 4) != 0) { ... }
if ((i & 8) != 0) { ... }
if ((i & 16) != 0) { ... }
if ((i & 32) != 0) { ... }
if ((i & 64) != 0) { ... }
if ((i & 128) != 0) { ... }

}

Trace Region In Maxpath we introduce a more flexible data
structure, namely the trace region. A trace region is similar to a
trace tree in that all traces are rooted at one program point, the
trace region anchor. Unlike trace trees, trace regions can include
join nodes, making trace-based compilation viable for large-scale
applications. Figure 4 shows a trace region following the same
growth path as the trace tree shown in Figure 3. As new traces

B1

B2

B3 B4

B5

B6

B7

B0

B8

B9

B10 B11

B12

CALL bar()

Figure 1. Control-flow graph of a method with two nested loops
where the inner loop invokes the bar() method.

B8

B10

B1

B2

B4

B9

B11

B12

B4'

B10

B7

B1

B2

B3 B4

B5

B6

B7

B0

B9

B11

B12

B5

B3

B2

Single Entry Point
Mul<ple
Exit Points

B8

CALL bar()

Deep
Exit Point

B6

Figure 2. A recorded program execution trace through the control
flow graph shown in Figure 1. The trace has a single entry point at
basic block B1, and many exit points at each of the off-trace basic
blocks. The trace partially inlines basic blocks in the bar() method
and therefore contains deep exit point at basic block B10.

are added to the region, basic blocks are immediately linked to
previously recorded blocks, and no tail duplication occurs.

To our knowledge, Maxpath is the first trace-based compiler to
use trace regions as its primary compilation data structure.

3. Maxpath
Maxpath, our trace-based compiler and trace collection framework,
is built on top of the Maxine VM. Maxine is a meta-circular re-
search VM under development at Sun Labs. It is written entirely in
the Java programming language, leveraging the benefits of meta-
circular design and the state-of-the-art development tools. Maxine
uses a tiered compilation strategy where methods are first compiled
with a non-optimizing just-in-time compiler in order to collect pro-
filing information, and then recompiled with an optimizing com-
piler for long-term efficient execution.

61

B2

B4

B9

B11

B12

B4'

B5 B6 B6

B2

B4

B9

B11

B12

B4'

B5

B10

B12

B4'

B5

B3

B5

B6

B1 B7

B6

B7

B10

B3 B2

B4

B9

B11

B12

B4'

B5 B6

B3

B6

B10

B12

B4'

B5

B2

B4

B9

B11

B12

B4'

B5 B6 B6

B10

B12

B4'

B5

B3

B5 B6

Exit Points or
Branch Points

Figure 3. A possible growth phase of a trace tree with excessive tail duplication anchored at basic block B2 in Figure 1. This trace tree
contains four traces, all starting at and branching back to B2.

B2

B4

B9

B11

B12

B4'

B5

B6

B10

B3 B2

B4

B9

B11

B12

B4'

B3

B10

B2

B4

B9

B11

B12

B4'

B10 B3

B6

B1 B7

B7B6

B5

B6

B5

B2

B4

B9

B11

B12

B4'

B10 B3

B5

Exit Points or
Branch Points

Figure 4. The growth phase of a trace region following the same growth path as the trace tree shown in figure Figure 3. The final trace region
contains a lot fewer basic blocks than the trace tree. (For illustration purposes, in this example, the trace region is allowed to include basic
blocks outside of the loop, namely B6 and B1, whereas Maxpath would not normally include these basic blocks in trace regions).

The non-optimizing just-in-time compiler in Maxine is essen-
tially an inline-threaded interpreter. Each Java bytecode is trans-
lated to a snippet of pre-assembled machine instructions. The just-
in-time compiler generates code quickly, in a single forward pass,
by concatenating and linking these snippets together. An important
aspect of the Maxine non-optimizing just-in-time compiler is that
it preserves the Java bytecode stack semantics. Figure 5 shows an
example output of the Maxine non-optimizing just-in-time com-
piler for a small sequence of Java bytecode instructions (ILOAD 0,
ICONST 1, IADD, ISTORE 0).

Maxine also ships with an optimizing compiler. The optimizing
compiler is much slower than the non-optimizing just-in-time com-
piler, but produces better code, and is used for bootstrapping. It per-
forms various standard optimizations, such as method inlining, and
whole-method register allocation. A second optimizing compiler
is currently under development [13]. The optimizing compiler uses
an optimized stack frame layout and calling convention which is in-
compatible with the stack frame layout used by the non-optimizing
just-in-time compiler. This requires the use of adapter frames to
adapt parameters from one calling convention to another.

ILOAD_0:
push [RBP + 0]

ICONST_1:
push 1

IADD:
pop RBX
pop RAX
add RAX, RBX
push RAX

ISTORE_0:
pop [RBP + 0]

Figure 5. Example AMD64 generated code by the Maxine non-
optimizing just-in-time compiler. Java bytecode stack semantics
are preserved by the just-in-time compiler. (RBP is used as a frame
pointer to access frame locals).

3.1 Trace Recording
The main prerequisite for building a trace-based compiler is the
capability to record program execution traces. Building a trace
recorder in an interpreter-based execution environment is fairly
easy.

62

Run$me Interpreter

IADD:

ISUB:

ICONST_0:

...

Recording Interpreter

IADD:

ISUB:

ICONST_0:

...

Start
Recording

Stop
Recording

SWITCH

SWITCH

Profiling 
Instrumenta$on

Recording 
Instrumenta$on

Figure 6. Design of a simple interpreter based trace recorder. In
order to minimize trace recording overhead, two interpreters are
used. A runtime interpreter is used to profile and execute instruc-
tions, while a recording interpreter is used to record instructions.
The VM can switch between the two interpreters at any time.

3.1.1 Trace Recording using Interpreters
To record traces, recording code can be inserted in the interpreter
loop before or after each Java bytecode instruction handler. This
code can record the execution of each bytecode as well as inspect
results produced by the execution of the instruction. Unfortunately,
this code impacts the performance of the interpreter. Since trace
recording is a relatively infrequent process, a two-interpreter trace
recording system can be used to minimize any trace recording over-
head (Figure 6). One runtime interpreter is used to execute Java
bytecode instructions while a functionally equivalent recording in-
terpreter is used to record traces. Once the runtime interpreter de-
cides to record a trace, it can switch to the recording interpreter.
Similarly, once trace recording is complete, the recording inter-
preter can switch back to the non-instrumented interpreter.

3.1.2 Trace Recording in Non-Optimizing
Just-in-Time Compilers

Since the performance of the non-optimizing just-in-time compiler
is much higher than that of a traditional interpreter, it is more dif-
ficult to pay back the overhead incurred by trace recording instru-
mentation. The more efficient the baseline execution environment
is, the more important it becomes to reduce instrumentation over-
head. In order to reduce the overhead of tracing we use a technique
similar to the one used in the dual interpreter approach. Maxpath
maintains two compiled versions for each method that is subject
to trace recording, a profile instrumented version and a trace in-
strumented version (Figure 7). The profile instrumented version is
sprinkled with profiling instrumentation or anchors at select pro-
gram locations. These locations are generally loop headers and are
discovered using an inexpensive static analysis performed during
Java bytecode verification. During program execution these an-
chors profile program behavior and trigger the recording of pro-
gram traces and the compilation of trace regions. Trace recording is
performed by hot swapping the profile instrumented version of the

Profile Instrumented

Trace Instrumented

Start
Recording

Stop
Recording

Anchor Profiling 
Instrumenta9on

Recording 
Instrumenta9on

ICONST_1

IADD

IADD

...

...

...

IF_ICMPGE

ICONST_1

IADD

IADD

...

...

...

IF_ICMPGE
...

...

Tracer

visitAnchor

visitBytecode

visitBytecode

visitBytecode

visitAnchor

visitBytecode

Figure 7. Design of a non-optimized just-in-time based trace
recorder. In order to minimize instrumentation overhead, two ver-
sions of a method are compiled. The first, profile instrumented, ver-
sion contains anchors that monitor the execution frequency of se-
lect program locations and trigger trace recording and compilation.
The second, trace instrumented, version contains recording instru-
mentation that is used to record traces. The two method versions
can be used interchangeably because they share a common stack
frame layout.

method with the trace instrumented version. The trace instrumented
version contains tracing instrumentation at each Java bytecode lo-
cation. This is used to signal the execution of each Java bytecode
as it is executed. Once trace recording is complete, execution is re-
sumed in the profile instrumented version of the method. Switching
between the two versions is possible because they share the same
stack frame layout, namely the Java bytecode stack frame layout.

3.1.3 Tracer
The tracer is responsible for the interaction between profile and
trace instrumented methods, as well as controlling the growth and
selection of trace regions. The tracer is a thread-local runtime com-
ponent that receives messages from instrumented methods and trig-
gers the recording and the execution of trace regions. Instrumented
methods interact with the tracer by sending two types of messages
visitAnchor and visitBytecode. The tracer in turn responds
with a resumption address. This address indicates where the instru-
mented code should resume execution. If the resumption address is
zero, the execution falls through to the next Java bytecode instruc-
tion.

The pseudo code presented below is the instrumentation code
that is inserted at each anchor or bytecode location.

In profile instrumented methods, the visitAnchor message
tells the tracer which anchor is about to be executed and what
the current frame pointer is. The tracer uses this information to
profile the anchor’s execution behavior and trigger trace recording.
If the tracer wants to start recording, it replies to the visitAnchor
message with the program address of the bytecode to be recorded in
the trace instrumented version of the method. Effectively, execution
is transferred from the profile instrumented version of the method to

63

the trace instrumented version. If the tracer wants to keep profiling
the execution of the anchor, it replies with the zero address.

resumeAddr = visitAnchor(anchor, RBP);
if (resumeAddr != 0) {

jump(resumeAddr);
}

Tracing Bytecode Execution Once execution is transferred to the
trace instrumented method, the visitBytecode message tells the
tracer which bytecode is about to be executed. It does this by pass-
ing along the current instruction pointer, as well as the stack and
the frame pointer. The tracer can infer the executed bytecode from
the instruction pointer by using metadata produced during non-
optimizing just-in-time compilation. (Using the stack pointer, the
tracer can inspect the current values on top of the Java stack. This
is necessary for recording branch conditions or speculating on the
receiver types of virtual calls.) After processing the message, if the
tracer wants to continue recording, it replies to the message with the
zero address which resumes the execution of the current bytecode.
Otherwise, if the tracer wants to stop recording it can reply with
the program address of the equivalent current bytecode in the pro-
file instrumented version of the method. Effectively, switching back
to the more efficient profile instrumented version of the method.

resumeAddr = visitBytecode(RIP, RSP, RBP);
if (resumeAddr != 0) {

jump(resumeAddr);
}

This technique allows Maxpath to record traces with minimal
runtime overhead, at the expense of maintaining duplicate method
versions (profile and trace instrumented). However, since trace in-
strumented methods are only ever needed if trace recording actually
occurs, they are createad on demand and freed at will. Moreover,
any residual anchor profiling instrumentation overhead can be min-
imized through code patching. In Maxpath, we simply overwrite
the anchor instrumentation with a JUMP instruction that effectively
jumps over the instrumentation if it’s no longer needed.

Tracing Method Invocations Method invocations present a chal-
lenge to trace recording. Maxpath uses an inlining policy that dic-
tates which methods should be partially inlined, or traced through.
Should the method be inlined, the trace instrumented version of the
method is invoked. If the method does not exist yet, it is compiled
with trace instrumentation on demand. The invoked method will
continue to send visitBytecode messages. If the method is not
inlined, the tracer is placed on hold and is only resumed once the
callee method returns. While the tracer is on hold, waiting for the
callee to return, the callee method, or a method further down the
execution stack may trigger yet other traces to be recorded and ex-
ecuted. Putting the tracer on hold, may prohibit these traces from
being recorded. For this reason, we use a stack of tracers. Once
one tracer is on hold, waiting for the callee method to return, it is
pushed on a tracer stack, and a new tracer is created that is ready
to record and execute additional traces. Once the callee method re-
turns the old tracer is popped off the tracer stack and recording is
continued. At any one point, any number of tracers can be on the
stack for any given thread, but only one tracer is active per thread,
while the remaining ones are on hold.

Threading presents yet another problem. What if two threads are
executing the same exact piece of code, and therefore competing for
growing the same trace region? In order to avoid lock contention
on a shared trace region data structure, we instead grow multiple
regions in parallel. The tracers commit the recorded trace regions
in completing order, and only the last one to be committed is kept,
the rest are discarded.

Trace Aborting Tracing can be aborted for many reasons. The
most common case is when the recorded trace exits the recording
scope, leaving the loop, or the method containing the original trace
anchor. Another common scenario is when the trace length exceeds
a certain limit. In these cases, trace recording can abort gracefully,
since the tracer knows exactly where to resume execution. The top-
most tracer is popped off the tracer stack, and the new tracer that is
now on top of the tracer stack is resumed. A more problematic case
is when an exception is thrown as a result of an invoked method. In
this case, it would be difficult to track how the VM performs stack
unwinding and where execution is ultimately resumed. In this case,
we abort all active tracers belonging to the thread throwing the ex-
ception, by clearing the tracer stack.

3.2 Trace Region Compilation
In order to cooperate with Maxine’s runtime infrastructure, we
model trace regions as methods. Stack walking and garbage collec-
tion rely on the method as being the sole computational element.
Modeling trace regions as methods is the most elegant way to fit
into Maxine’s runtime environment. An additional benefit of this
approach is that we are able to use Maxine’s back-end register al-
locator and code generator.

One crucial distinction between trace regions and methods is
that trace regions have many exit points, while methods have only
one. In a method, all returning control-flow can be joined into one
exit point. Moreover, unlike methods, trace regions have many live-
out parameters, while Java methods have at most one.

Efficient transfer of control into, and out of trace regions, is very
important. Trace regions are generally anchored at loop headers
where many local variables could be live. Many of these live vari-
ables must flow into trace regions, and therefore an efficient calling
convention is critical for performance.

We have tried various approaches, ranging from passing live
variables by value or by reference, or a combination of both. These
approaches incur a significant overhead since they require quite a
bit of parameter shuffling to occur on the stack.

In Maxpath we take a more efficient approach. We statically
link the trace region at anchor call sites in methods compiled with
the non-optimizing just-in-time compiler. Since we have complete
information about stack frame layouts, we can adapt the param-
eters of trace regions (that are modeled as methods) to the ex-
act stack locations of live-in variables located in non-optimized
method frames. Compiled regions have efficient direct read or write
access to live-in variables. To do this we modify the register alloca-
tor so that it maps input parameters to stack locations in the caller’s
frame. Live-out variables can be handled similarly, they are written
back directly into the caller’s method frame. This is possible only
because a trace region is only ever called from one call site.

3.3 Transfers
One of the challenging aspects of trace-based compilation is build-
ing an efficient control-transfer mechanism. Although trace regions
attempt to capture as much control flow as possible, a significant
number of trace region exits still occur, requiring execution to be
resumed in non-optimized methods.

3.3.1 Fast Transfers
In order to implement transfers, we have introduced a new control-
flow instruction to the Maxine VM named Transfer. This instruc-
tion carries with it enough information to reconstruct a sequence of
stack frames, write back appropriate values, and then resume ex-
ecution at a different program location. This information is essen-
tially the symbolic Java stack state that was recorded during trace
recording.

64

Non‐Op'mized Frame 1

Trace Region Frame

Locals

Stack

Adapter Frame

Reserves stack space
for deepest possible transfer.

Non‐Op'mized Frame 1

Locals

Stack

Non‐Op'mized Frame 2

Locals

Stack

Non‐Op'mized Frame 3

Locals

Stack

Figure 8. Invocation of a trace region from a non-optimized
method. An adapter frame reserves space on the stack for the deep-
est possible transfer. The trace region frame has direct access to
the live-in variables in the original non-optimized method frame.
Upon exiting, the trace region writes live-out variables and recon-
structs additional non-optimized method frames, before resuming
execution.

Machine code that writes back each individual live-out variable,
and additional bookkeeping information to link non-optimized
frames is emitted for the transfer instruction during code gener-
ation. The last machine code instruction generated for the transfer
is an unconditional branch to Java bytecode address where execu-
tion should resume.

Because transfers may restore multiple non-optimized frames,
as is the case if a region exit occurs in a deeply inlined method,
we need to ensure that enough space is reserved on the stack for
the deepest possible region exit. If we don’t reserve enough space,
the restored methods may overwrite the currently executing trace
region frame. To accomplish this, we use a trace region adapter
frame that simply allocates some space on the stack before calling
the trace region (Figure 8).

3.3.2 Slow Transfers
The code generated for each transfer instruction could lead to an
increase in compilation time, and code cache size. To optimize
the size of the generated code we statically predict which transfers
are more likely than others. Surely, array index checks, and other
exceptional cases are less likely to cause transfers than explicit
control-flow instructions. For these cases, we use an additional
transferring mechanism. Instead of writing back each value using
custom generated machine code, we instead invoke a transfer()
method within the Maxpath runtime. This method uses a special
calling convention where it first saves the state of all machine reg-
isters before executing (similar to the way a trap handler would
work). The transfer method then inspects metadata about the trans-
fer which indicates the target location of each live-out variable (e.g.
whether the variable was stored in a register or spilled to a stack lo-
cation). Using this data, it can reconstruct non-optimized frames
in the reserved stack region and resume execution. This technique
is not as efficient as the fast transfer method, but can be used to
dramatically reduce code size.

4. Evaluation
To evaluate the performance and runtime characteristics of Max-
path we have chosen a wide variety of benchmarks. Ranging from
small computational kernels, to large benchmarks representative of
real world applications. All experiments were performed on a Mac
Pro with 2 Quad-Core Intel Xeon Processors clocked at 2.8 GHz
and 10 GB RAM running MacOS 10.5. Each benchmark has a self
timing mechanism, and these are the results that are reported here.
Each of the benchmarks was executed with two warmup runs, and
an additional timed run, for a total of three iterations at the default
problem size.

DaCapo Benchmark Suite We have chosen four of the larger
benchmarks in the DaCapo 2006 benchmark suite. Bloat performs
a series of optimizations on Java bytecode files. Jython is a Python
interpreter written in Java. Luindex is a text indexing tool. Eclipse
executes non-GUI performance tests for the Eclipse IDE and is the
largest of the benchmarks, with over 12,400 methods.

SPECjvm2008 Benchmark Suite Compress encodes data using
a Lempel-Ziv method. Aes, rsa, and signverify are crypto bench-
marks. Compiler is the OpenJDK Java front end and compiles it-
self. Mpeg performs mp3 decoding. Fft, lu, sor, sparse and monte
carlo are Java ports of the Scimark benchmark.

Experimental Setup The recording threshold for Maxpath was
set to 1000. Every trace region was extended with traces a maxi-
mum of 4 times. The maximum trace length was configured to 32
basic blocks. We compare the performance results of three different
VM configurations:

• Baseline: Maxine is executed only with the non-optimizing just-
in-time compiler. Under this configuration, no adaptive opti-
mizations occur.

• Method: Maxine is executed with adaptive optimizations. The
non-optimizing just-in-time compiler profiles method execution
count and performs re-compilation with the optimizing com-
piler.

• Trace Region: Maxine is executed with Maxpath enabled.
Adaptive method re-compilation still occurs, but only for meth-
ods that contain straight-line code. All other program regions
are handled by the trace-based compiler.

Results On the four DaCapo benchmarks the Maxpath trace-
based compiler lags behind the Maxine optimizing compiler (Fig-
ure 9). We speculate the reason for this is that there are very few
hot program regions in these benchmarks. An analysis of the bench-
marks [5] indicates in eclipse only about 0.5% of the methods are
hot. Bloat, jython, and luindex have more hot methods, with 4.9%,
9.2%, 17% respectively. This trend appears to be consistent with
the benchmark results, in that both the Maxine optimizing com-
piler and the Maxpath trace-based compiler are both able to detect
and optimize hot loop regions. The interesting result here is that
both the Maxine optimizing compiler and Maxpath perform worse
than the baseline configuration. One possible explanation for this
behaviour is that profiling and compilation overhead never pays off
in this case. On average, trace region compilation is 16% faster than
the baseline for the four selected DaCapo benchmarks. The Maxine
optimizing compiler is 27% faster on average.

On the SPECjvm2008 benchmarks Maxpath performs much
better, up to 100% faster than the baseline, and 60% faster than the
Maxine optimizing compiler. The biggest performance difference
appears in the Scimark suite of benchmarks: fft, lu, sor and sparse.
A possible explanation for this is that the Maxine optimizing com-
piler fails to identify hot program regions due to its inability to per-
form on stack replacement. Maxpath identifies these regions and

65

Benchmark visitAnchors visitBytecodes Blocks Traces Anchors Regions % Grown Transfers Tran/Reg

DaCapo Benchmark Suite [5]

bloat 306,490 20,946 16,323 488 753 191 25% 529 2.77
eclipse 881,106 57,167 67,232 1,062 2,645 458 17% 1,397 3.05
jython 380,012 163,358 27,691 564 995 221 22% 658 2.98
luindex 151,729 14,314 10,504 236 429 93 22% 368 3.96

SPECjvm2008 Benchmark Suite [10]

compiler 555,852 39,032 22,044 783 933 358 38% 944 2.64
compress 66,771 6,797 8,716 105 349 37 11% 71 1.92
aes 112,147 10,600 11,745 165 459 60 13% 110 1.83
rsa 151,604 15,045 11,594 259 474 98 21% 193 1.97
signverify 148,145 13,757 10,297 280 434 106 24% 186 1.75
mpeg 160,646 27,798 9,905 288 465 110 24% 178 1.62
fft 88,295 13,945 8,818 137 366 51 14% 74 1.45
lu 95,324 12,966 8,832 144 373 55 15% 78 1.42
sor 66,950 9,256 8,635 96 343 34 10% 51 1.50
sparse 66,908 6,047 8,638 100 344 35 10% 53 1.51
monte carlo 59,056 4,801 8,602 83 338 29 9% 42 1.45

Table 1. Various statistics collected during program execution under the Trace Region configuration. The first two columns indicate the
number of visitAnchor and visitBytecode messages recieved by the tracer. Column 3 indicates the number of basic blocks in the
benchmark. Column 4 indicates the number of times a trace was recorded and added to a trace region. Column 5 shows the number of
anchors detected and inserted as part of our loop analysis phase. Column 6 shows the number of trace regions that were grown and compiled
during the execution of the benchmark. Column 7 indicates the percentage of anchors for which a trace region was ever grown. Column 8
indicates the number of transfer instructions that were inserted in the compiled regions. The last column indicates the average number of
transfer instructions that were inserted per region.

0

0.5

1

1.5

2

2.5

3

bloat eclipse jython luindex compiler compress aes rsa signverify mpeg fft lu sor sparse monte carlo

Ex
ec
u&

on
 P
er
fo
rm

an
ce
 (n

or
m
al
iz
ed

 to
 b
as
el
in
e)

Benchmark

Baseline Method Trace Region

Figure 9. Benchmark results are normalized to the baseline Maxine non-optimizing just-in-time compiler (higher is better).

is able to pull ahead. Maxpath outperforms the Maxine optimizing
compiler on all but the compiler and mpeg benchmarks. The com-
piler benchmark is the largest of the SPECjvm2008 benchmarks we
selected, and Maxpath likely suffers in the same way that it did on
the DaCapo benchmarks.

Overall the results show that Maxpath performs well and op-
timizes small computational kernels, but has trouble optimizing
larger-scale benchmarks.

66

5. Related Work
Tracing is a well established technique for dynamic profile-guided
optimization of native binaries. Bala et al. [2] introduced tracing
as method for runtime optimizing native program binaries in their
Dynamo system. They used backward branch targets as candidates
for start of a trace, but did not attempt to capture traces of loops.
Zaleski et al. [15] used Dynamo-like tracing in order to achieve
inlining, indirect jump elimination, and other optimizations for
Java. Their primary goal was to build an interpreter that could be
extended to a tracing VM.

Gal et al. [7] proposed to build dynamic compilers in which
no CFG is ever constructed, and no source code level compilation
units such as methods are used. Instead, runtime profiling is used
to detect frequently executed cyclic code paths in the program.
The compiler then records and generates code from dynamically
recorded code traces along these paths. It assembles these traces
dynamically into a tree-like data-structure that covers frequently
executed (and thus compilation worthy) code paths through hot
code regions. A major benefit of this approach is that the trace
tree data structure only contains actually relevant code areas. Edges
that are not executed at runtime (but appear in the static CFG)
are not considered in the trace representation, and are delegated
to an interpreter in the rare cases they are taken. The absence of
control flow merge points in this tree-based representation greatly
simplifies optimization algorithms and this results in optimization
passes being quicker than compilers that use traditional CFG-based
analysis. The system relies on an interpreter to collect traces, while
we utilize a just-in-time compiler.

Gal et al. [8] extended the previous work on trace-based com-
pilation for Java and built a production-level traced-based VM
(TraceMonkey) for JavaScript, currently shipping in the Mozilla
Firefox Browser.

Whaley [14] uses partial-method compilation to reduce the
granularity of compilation to the sub-method level. His system uses
profile information to detect never or rarely executed parts of a
method and to ignore them during compilation. If such a part gets
executed later, execution continues in the interpreter. Compilation
still starts at the beginning of a method.

Similarly, Suganuma et al. [11] propose region-based compi-
lation to overcome the limitations of method-based compilation.
They use heuristics and profiles to identify and eliminate rarely
executed sections of code. In combination with method inlining,
they try to group all frequently executed code in one compilation
unit, but to exclude infrequently executed code. If an excluded code
part has to be executed, they rely on recompilation and on-stack-
replacement (OSR). Our trace-based compilation reaches this goal
without requiring complex heuristics. They observed not only a re-
duction in compilation time, but also achieved better code quality
due to rarely executed code being excluded from analysis and opti-
mization.

Merrill et al. [9] presented a solution, implemented on the Jikes
RVM, for selecting trace fragments within an non-interpreter based
JVM. Their system compiles each method into two equivalent
binary representations: a low-fidelity region with counters to profile
hot loops and a high-fidelity region that has instrumentation to
sample every code block reached by a trace. When a hot loop has
been identified, the low-fidelity code transfers control to the high-
fidelity region for trace formation. Once a trace has been formed,
execution jumps back to the appropriate low-fidelity region. In
their system, profiling and trace formation happens at the machine
code level, not at the bytecode level as is the case in Maxpath.
Unlike Maxpath, their system assembles traces by stiching together
machine level basic blocks that were previously compiled with
the whole method just-in-time compiler. Therefore higher-level
compiler optimizations like CSE and loop invariant code motion

are not performed along traces in their system. The Maxpath trace
optimizing compiler on the other hand operates on CFGs and is able
to perform optimizations accross many basic blocks and methods.

6. Conclusions
In conclusion, we have shown that trace-based compilation is fea-
sible and beneficial in runtime environments without interpreters.
We have introduced trace regions as the primary compilation unit
and have shown how they can be recorded and grown using dy-
namic instrumentation. In order to execute trace regions, and re-
turn from them efficiently, we have presented a technique based on
frame linking with the help of the register allocator. Lastly, we have
described how a Java virtual machine can be retrofitted to support
trace-based compilation with relatively little effort.

For this work we have built a new SSA-based optimizing com-
piler. Our compiler performs a series of optimization passes, the
most interesting of which are alias analysis and invariant code mo-
tion. In future work we plan to focus more on trace specific op-
timizations, such as escape analysis, guard strength reduction and
speculative execution.

Finally, our experimental results are promising, showing that
compilation based on trace regions is comparable with method
compilation in large-scale benchmarks, and performs better in
smaller computationally heavy benchmarks.

Acknowledgments
Parts of this effort have been sponsored by the California MICRO
Program and industrial sponsor Sun Microsystems under Project
No. 07-127, as well as by the National Science Foundation (NSF)
under grants CNS-0615443 and CNS-0627747. Further support has
come from generous unrestricted gifts from Sun Microsystems,
Google, and Mozilla, for which the authors are immensely grateful.
The authors would also like to thank Bernd Mathiske, Doug Simon
the rest of the Maxine team at Sun Labs for their guidance and
support.

The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed here are those of the authors and should
not be interpreted as necessarily representing the official views,
policies, or endorsements, either expressed or implied, of the NSF,
any other agency of the U.S. Government, or any of the companies
mentioned above.

References
[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey

of adaptive optimization in virtual machines. Proceedings of the IEEE,
93(2):449–466, 2005. doi: 10.1109/JPROC.2004.840305.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 1–12. ACM Press, 2000. doi: 10.1145/349299.349303.

[3] T. Ball and J. Larus. Efficient Path Profiling. In Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), Paris, France, December 1996.

[4] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. SPUR: A trace-based JIT compiler for
CIL. Technical Report MSR-TR-2010-27, Microsoft Research.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. pages 169–190. ACM Press, 2006. doi: 10.1145/1167473.
1167488.

67

[6] A. Gal. Efficient Bytecode Verification and Compilation in a Virtual
Machine. PhD thesis, University of California, Irvine, 2006.

[7] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An effective JIT
compiler for resource-constrained devices. In Proceedings of the
International Conference on Virtual Execution Environments, pages
144–153. ACM Press, 2006. doi: 10.1145/1134760.1134780.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, B. Kaplan, G. Hoare,
D. Mandelin, B. Zbarsky, J. Orendorff, M. Bebenita, M. Chang,
M. Franz, E. Smith, R. Reitmaier, and M. Haghighat. Trace-based
just-in-time type specialization for dynamic languages. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM Press, 2009.

[9] D. Merrill and K. Hazelwood. Trace fragment selection within
method-based JVMs. In Proceedings of the International Conference
on Virtual Execution Environments, pages 41–50. ACM Press, 2008.

[10] SPECjvm2008. Standard Performance Evaluation Corporation, 2008.
http://www.spec.org/jvm2008/.

[11] T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation
technique for dynamic compilers. ACM Transactions on Programming
Languages and Systems, 28(1):134–174, 2006. doi: 10.1145/1111596.
1111600.

[12] Sun Microsystems. Maxine Virtual Machine. http://research.sun.com/
projects/maxine/, 2008.

[13] B. L. Titzer, T. Würthinger, D. Simon, and M. Cintra. Improving
compiler-runtime separation with XIR. In Proceedings of the Interna-
tional Conference on Virtual Execution Environments, pages 39–50.
ACM Press, 2010. doi: 10.1145/1735997.1736005.

[14] J. Whaley. Partial method compilation using dynamic profile infor-
mation. In Proceedings of the ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, pages
166–179. ACM Press, 2001.

[15] M. Zaleski, A. D. Brown, and K. Stoodley. Yeti: a gradually extensible
trace interpreter. In Proceedings of the International Conference on
Virtual Execution Environments, pages 83–93. ACM Press, 2007. doi:
10.1145/1254810.1254823.

68

